Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Dễ dàng chứng minh AIHK là hình chữ nhật nên AH=IK.
b
Gọi O là giao điểm của IK và AH.
Do AM là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên MA=MC
\(\Rightarrow\Delta\)MAC cân tại M => \(\widehat{MAC}=\widehat{MCA}\left(1\right)\)
Do O là giao điểm 2 đường chéo của hình chữ nhật nên OA=OK => tam giác OAK cân tại O \(\Rightarrow\widehat{OKA}=\widehat{OAK}\left(2\right)\)
Cộng vế theo vế của (1);(2) ta có:
\(\widehat{MAK}+\widehat{OKA}=\widehat{MCK}+\widehat{OAK}=\widehat{AHC}=90^0\)
\(\Rightarrowđpcm\)
c
AIHK là hình vuông nên AH là đường phân giác.Mà AH là đường cao nên tam giác ABC cân tại A.
Mà tam giác ABC vuông tại A nên ABC vuông cân tại A.
Vậy để tứ giác AIHK là hình vuông thì tam giác ABC phải là tam giác vuông cân.
A B C D E
a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b, Theo câu a, ta có :
\(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
Lại có : \(\widehat{B}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều
c, Do : \(\Delta ABE\)đều
\(\Rightarrow AB=BE=5\left(cm\right)\)
Do : \(BD\)là phân giác của \(\widehat{B}\)
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)
Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)
Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)
Xét : \(\Delta BDE\)và \(\Delta CDE\)có :
\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)
\(DE\)chung
\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)
\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)
\(\Rightarrow BE=CE=5\left(cm\right)\)
\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)
Vậy : \(BC=10\left(cm\right)\)