K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

lhHua1Q.png

Dễ dàng chứng minh AIHK là hình chữ nhật nên AH=IK.

b

Gọi O là giao điểm của IK và AH.

Do AM là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên MA=MC

\(\Rightarrow\Delta\)MAC cân tại M => \(\widehat{MAC}=\widehat{MCA}\left(1\right)\)

Do O là giao điểm 2 đường chéo của hình chữ nhật nên OA=OK => tam giác OAK cân tại O \(\Rightarrow\widehat{OKA}=\widehat{OAK}\left(2\right)\)

Cộng vế theo vế của (1);(2) ta có:

\(\widehat{MAK}+\widehat{OKA}=\widehat{MCK}+\widehat{OAK}=\widehat{AHC}=90^0\)

\(\Rightarrowđpcm\)

c

AIHK là hình vuông nên AH là đường phân giác.Mà AH là đường cao nên tam giác ABC cân tại A.

Mà tam giác ABC vuông tại A nên ABC vuông cân tại A.

Vậy để tứ giác AIHK là hình vuông thì tam giác ABC phải là tam giác vuông cân.

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

27 tháng 3 2019

A B C D E

a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)

\(BD\)chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b, Theo câu a, ta có :

\(\Delta ABD=\Delta EBD\left(cmt\right)\)

\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )

\(\Rightarrow\Delta ABE\)là tam giác cân

Lại có : \(\widehat{B}=60^o\)

\(\Rightarrow\Delta ABE\)là tam giác đều 

c, Do : \(\Delta ABE\)đều 

\(\Rightarrow AB=BE=5\left(cm\right)\)

Do : \(BD\)là phân giác của \(\widehat{B}\)

\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)

Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)

Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)

\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)

Xét : \(\Delta BDE\)và \(\Delta CDE\)có : 

\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)

\(DE\)chung

\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)

\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)

\(\Rightarrow BE=CE=5\left(cm\right)\)

\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)

Vậy : \(BC=10\left(cm\right)\)

20 tháng 4 2019

A B C D K O F I E

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2