Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
Câu 1:
\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+\left(1+\frac{1}{3.5}\right)+...\left(1+\frac{1}{2014.2016}\right)\)
\(\Rightarrow C=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{2015.2015}{2014.2016}\)
\(\Rightarrow C=\frac{4.9.16...2015.2015}{3.8.15...2014.2016}\)
\(\Rightarrow C=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4...2014.2016}\)
\(\Rightarrow C=\frac{2.3.4...2015.2.3.4...2015}{1.2.3...2014.3.4.5...2016}\)
\(\Rightarrow C=\frac{2015}{1008}.\)
Vậy \(C=\frac{2015}{1008}.\)
Câu 2:
Do p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\)hoặc\(3k+2\)
+ Nếu \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1\)
\(=9k^2+3k+3k+1-1\)
\(=9k^2+6k⋮3.\)( 1 )
+ Nếu \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1\)
\(=9k^2+6k+6k+4-1\)
\(=9k^2+12k+3⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow p^2-1⋮3\left(đpcm\right).\)
Câu 3:
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=10^{30}.\)( 1 )
\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.512^7< 2^{31}.125.625^7=2^{31}.5^{31}=\)\(10^{31}.\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow10^{30}< 2^{100}< 10^{31}.\)
\(\Rightarrow\)2100 khi viết trong hệ thập phân có 31 chữ số.
Đáp số: 31 chữ số.
Câu 1 :
C = (1 + 1/1.3)(1 + 1/2.4)(1 + 1/3.5) .... (1 + 1/2014.2016)
C = (1.3/1.3 + 1/1.3) (2.4/2.4 + 1/2.4) ... (2014.2016/2014.2016 + 1/2014.2016)
C = 2.2/1.3 * 3.3/2.4 * ... * 2015.2015/2014.2016
C = 2.3....2015/1.2....2014 * 2.3....2015/3.4....2016
C = 2015 * 1/1008
C = 2015/1008
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
Giải: Đặt A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
Tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy A = 4949/9900