\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Câu 1:

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+\left(1+\frac{1}{3.5}\right)+...\left(1+\frac{1}{2014.2016}\right)\)

\(\Rightarrow C=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{2015.2015}{2014.2016}\)

\(\Rightarrow C=\frac{4.9.16...2015.2015}{3.8.15...2014.2016}\)

\(\Rightarrow C=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4...2014.2016}\)

\(\Rightarrow C=\frac{2.3.4...2015.2.3.4...2015}{1.2.3...2014.3.4.5...2016}\)

\(\Rightarrow C=\frac{2015}{1008}.\)

Vậy \(C=\frac{2015}{1008}.\)

Câu 2:

Do p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\)hoặc\(3k+2\)

+ Nếu \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1\)

                                                      \(=9k^2+3k+3k+1-1\)

                                                      \(=9k^2+6k⋮3.\)( 1 )

+ Nếu \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1\)

                                                      \(=9k^2+6k+6k+4-1\)

                                                        \(=9k^2+12k+3⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow p^2-1⋮3\left(đpcm\right).\)

Câu 3:

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=10^{30}.\)( 1 )

\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.512^7< 2^{31}.125.625^7=2^{31}.5^{31}=\)\(10^{31}.\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow10^{30}< 2^{100}< 10^{31}.\)

\(\Rightarrow\)2100  khi viết trong hệ thập phân có 31 chữ số.

                                           Đáp số: 31 chữ số.

3 tháng 6 2018

Câu 1 : 

C = (1 + 1/1.3)(1 + 1/2.4)(1 + 1/3.5) .... (1 + 1/2014.2016) 

C = (1.3/1.3 + 1/1.3) (2.4/2.4 + 1/2.4) ... (2014.2016/2014.2016 + 1/2014.2016) 

C =  2.2/1.3 * 3.3/2.4 * ... * 2015.2015/2014.2016 

C = 2.3....2015/1.2....2014 * 2.3....2015/3.4....2016 

C = 2015 * 1/1008

C = 2015/1008

18 tháng 7 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow2B=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{101}\)

\(\Rightarrow2B-B=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{101}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(\Rightarrow B=1-\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow B=1-\frac{1}{2^{100}}\)

\(\Rightarrow B< 1\)(đpcm)

_Chúc bạn học tốt_

a,-3/5.2/7+-3/7.3/5+-3/7

=-3/7.2/5+(-3/7).3/5+(-3/7) 

=-3/7(2/5+3/5+1)

=-3/7.2

=-6/7

12 tháng 8 2019

\(\left(\frac{-2}{3}-\frac{1}{2}\right):\frac{-1}{4}\le x\le\left(\frac{-5}{6}+\frac{2}{\frac{1}{4}}:\frac{-3}{2}\right)\cdot\left(\frac{-7}{\frac{1}{2}}\right)\)

\(taco:\left(\frac{-2}{3}-\frac{1}{2}\right):\frac{-1}{4}=\frac{-7}{6}:\frac{-1}{4}=\frac{14}{3}\)

\(\left(\frac{-5}{6}+\frac{2}{\frac{1}{4}}:\frac{-3}{2}\right)\cdot\left(\frac{-7}{\frac{1}{2}}\right)=\left(\frac{-5}{6}+\frac{-16}{3}\right)\cdot\left(-14\right)=\frac{-37}{6}\cdot\left(-14\right)=\frac{259}{3}\)

TU DO \(=>X=\frac{14}{3};\frac{15}{3};,,,;\frac{259}{3}\)

CHUC BAN HOC TOT :))

22 tháng 4 2019

đụ cha mi

mi trù ta thi rớt HK II mà ta giúp mày hả

mấy bài này cũng dễ ẹt nữa

đừng có mơ ta sẽ giúp mày

ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
 

3 tháng 5 2019

\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)

\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)

\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)

\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)

\(B=\frac{100\cdot2}{1\cdot101}\)

\(B=\frac{200}{101}\)

23 tháng 3 2019

1.\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{49}{50}=\frac{1}{50}\)

23 tháng 3 2019

1/ \(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{49}{50}=\frac{1.\left(2.3.4...49\right)}{50.\left(2.3.4....49\right)}=\frac{1}{50}\)

2/ Chưa học dạng này:v

26 tháng 6 2019

\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

26 tháng 6 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)