Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là độ dài cạnh AC, Đk: \(x>0\)
Theo bất đẳng thức tam giác, ta có:
\(10-7< x< 10+7\)
\(\leftrightarrow3< x< 17\)
Vì x là một số nguyên tố lớn hơn 11
Nên x = 13
\(\rightarrow\) Chọn D
\(#Hân\)
Gọi độ dài của cạnh `AC` là `x (x \ne 0)`
`@` Theo bất đẳng thức trong tam giác, ta có:
`AB+BC > x > AB - BC`
`-> 10+7 > x > 10-7`
`-> 17 > x > 3`
`-> x={16 ; 15 ; 14 ; ... 4}`
Mà `x` là `1` số nguyên tố lớn hơn `11`
`-> x=13 (cm)`
Xét các đáp án trên
`-> D.`
A B C D
Áp dụng định lí Pi - ta - go vào t/giác ABD vuông tại D, ta có:
AB2 = BD2 + AD2
=> AD2 = AB2 - BD2 = 172 - 152 = 64
=> AD = 8 (cm)
Ta có: AC = AD + DC => DC = AC - AD = 17 - 8 = 9 (cm)
Áp dụng định lí Pi - ta - go vào t/giác ADC vuông tại D, ta có:
BC2 = BD2 + DC2 = 92 + 152 = 306
=> BC = \(\sqrt{306}\)(cm)
Bạn vẽ hình nha
Xét tam giác AHB vuông tại h
\(BH=\sqrt{BA^2-AH^2}\)(Py ta go)
\(\Rightarrow BH=\sqrt{10^2-8^2}=6\)
Xét tam giác AHC vuông tại H
\(CH=\sqrt{AC^2-AH^2}\)
\(\Rightarrow CH=15\)
\(\Rightarrow BC=21\Rightarrow BC^2=441\)
Xét \(AB^2+AC^2=10^2+17^2=389\)
\(\Rightarrow BC^2\ne AB^2+AC^2\)
Vậy tam giác ABC không là tam giác vuông
A B C
Ta có : \(\hept{\begin{cases}AB+AC=17\\AB-AC=7\end{cases}\Rightarrow}\hept{\begin{cases}AC=5\\AB=12\end{cases}\left(cm\right)}\)
Do \(\Delta ABC\) vuông tại A
\(\Rightarrow AB^2+AC^2=BC^2\) ( định lý Pytago )
\(\Rightarrow12^2+5^2=BC^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13\left(BC>0\right)\)
Vậy : \(BC=13\left(cm\right)\)
Theo bài ta có: \(AB+AC=17cm\); \(AB-AC=7cm\)
\(\Rightarrow\left(AB+AC\right)+\left(AB-AC\right)=17+7\left(cm\right)\)
\(\Leftrightarrow2AB=24\left(cm\right)\)\(\Leftrightarrow AB=12\left(cm\right)\)
\(\Rightarrow AC=17-12=5\left(cm\right)\)
\(\Delta ABC\)vuông tại A \(\Rightarrow\)Áp dụng định lí Pytago ta có:
\(AB^2+AC^2=BC^2\)\(\Rightarrow BC^2=12^2+5^2=169\)\(\Rightarrow BC=13\left(cm\right)\)
Vậy \(BC=13cm\)
Ta có: \(BC>AC>AB\Rightarrow3BC>BC+AC+AB=18\Rightarrow BC>6\)
Theo bất đẳng thức trong tam giác ABC: \(BC< AC+AB\Rightarrow2BC< BC+AC+AB=18\Rightarrow BC< 9\)
Suy ra \(6< BC< 9\)mà \(BC⋮2\Rightarrow BC=8\)
Vậy độ dài cạnh BC là 8cm
Chúc bạn học tốt!
Độ dài đoạn AB=(17+7):2=12 cm
Đọ dài đoạn AC=(17-7):2=5cm
Vì tam giác ABC vuông tại A
Áp dụng định lý PI-ta-go có:
BC2=AB2+AC2
=>BC2=122+52
=>BC2=144+25
=>BC2=169
=>BC=\(\sqrt{169}=13cm\)