Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;0\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(m;-1\right)\) là 1 vtpt
Để góc giữa 2 đường thẳng bằng 45 độ
\(\Rightarrow cos\left(d_1;d_2\right)=cos45^0=\dfrac{\left|1.m-0.1\right|}{\sqrt{1^2+0^2}.\sqrt{m^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2}}=\dfrac{\left|m\right|}{\sqrt{m^2+1}}\Leftrightarrow m^2+1=2m^2\)
\(\Rightarrow m=\pm1\)
Có 2 giá trị m
Ta có các vecto pháp tuyến: \(\overrightarrow{n_d}=\left(2;1\right);\overrightarrow{n_{d'}}=\left(1;3\right);\overrightarrow{n_{\Delta}}=\left(m;1\right)\)
a/ \(cos\left(d;d'\right)=\frac{\left|2.1+3.1\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+3^2}}=\frac{\sqrt{2}}{2}\Rightarrow\left(d;d'\right)=45^0\)
b/ Để \(\Delta\) cùng tạo với d 1 góc 45 độ thì \(\Delta//d'\) hoặc \(\Delta\perp d'\)
\(\Rightarrow\left[{}\begin{matrix}\frac{m}{1}=\frac{1}{3}\\1.m+3.1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{3}\\m=-3\end{matrix}\right.\)
d ( A; d) = \(\sqrt{5}\)
\(\Leftrightarrow\frac{\left|2m+1-m+4\right|}{\sqrt{m^2+1}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+5\right|=\sqrt{5.\left(m^2+1\right)}\)
\(\Leftrightarrow\)m2 + 10m + 25 = 5m2 + 5
\(\Leftrightarrow\)4m2 - 10m -20 = 0
\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{5+\sqrt{105}}{4}\\m=\frac{5-\sqrt{105}}{4}\end{matrix}\right.\)
=> m1 + m2 = 5/2
#mã mã#
a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+1=0
=>c=-1
=>x-4y-1=0
b: Vì (d) vuông góc x-4y+5=0
nên (d): 4x+y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+4=0
=>c=-4
=>4x+y-4=0
B A K H C E I D
Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.
Gọi I là giao điểm của AC và BD
Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)
Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)
Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)
Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE
- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)
Do I thuộc (C) nên có phương trình :
\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)
- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)
- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)
Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)
Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)
Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
(d): VTPT là (m;1)
(d'): VTPT là (m;-4)
(d) vuông góc (d')
=>m^2-4=0
=>m=2 hoặc m=-2
=>Có 2 số nguyên m thỏa mãn