Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto BC=(2;-5)
=>VTPT là (5;2)
Phương trình (d) là:
5(x+1)+2(y-2)=0
=>5x+5+2y-4=0
=>5x+2y+1=0
b: Gọi (C): x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)
=>(C): x^2+y^2+19/4x+13/2y-53/4=0
=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64
=>(x+19/8)^2+(y+13/4)^2=1885/64
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
a: vecto AB=(2;-1)
PTTS AB là:
x=1+2t và y=2-t
vecto AB=(2;-1)
=>VTPT là (1;2)
PTTQ của AB là:
1(x-1)+2(y-2)=0
=>x-1+2y-4=0
=>x+2y-5=0
c:PT đường cao CH là:
2(x-5)+(-1)(y-4)=0
=>2x-10-y+4=0
=>2x-y-6=0
Tọa độ hình chiếu của C trên AB là:
2x-y-6=0 và x+2y-5=0
=>C(17/5;4/5)
e: PT (C) có dạng là:
x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
1+4-2a-4b+c=0 và 9+1-6a-2b+c=0 và 25+16-10a-8b+c=0
=>a=23/8; b=13/4; c=55/4
=>(C): x^2+y^2-23/4x-13/2x+55/4=0
=>x^2-2*x*23/8+529/64+y^2-2*x*13/4+169/16=325/64
=>(x-23/8)^2+(y-13/4)^2=325/64
Viết PT đường trung tuyến BK
Xác định K:
xK = \(\frac{x_A+x_C}{2}\) = \(\frac{3}{2}\)
yK = \(\frac{y_A+y_C}{2}\) = \(\frac{9}{2}\)
(BK): \(\frac{x-x_B}{x_K-x_B}=\frac{y-y_B}{y_K-y_B}\)
=> (x-3)/(3/2 - 3) = (y+5)/(9/2 +5)
=> -2(x-3)/3 = 2(y+5)/19
=> -19x + 57 = 3y + 15
=> y = \(\frac{-19x}{3}+14\)
Đường thẳng (d1) vuông góc (BK) có dạng y = 3x/19 +c
do qua A(-1,2) => 2 = -3/19 + c => c = 2 + 3/19 = 41/19
=> (d1): y =\(\frac{3x}{19}+\frac{41}{19}\)
Giả sử đường thẳng cần tìm cắt BC tại M
Ta có \(\frac{S_{ABM}}{S_{ACM}}\)=2
mà S(ABM)/S(ACM) =(AH.BM/2)/(AH.CM/2) = \(\frac{BM}{CM}\) = 2 (AH là đường cao)
=> Vecto MB/ Vecto MC = -2
=> xM = (xB + 2xC)/ 3 = \(\frac{11}{3}\)
=> yM = (yB + 2yC)/3 = \(\frac{9}{3}\) = 3
=> Viết PT đường thẳng (d) đi qua A, M:
(x-xA)/(xM-xA)= (y-yA)/(yM-yA)
=> (x+1)/(11/3 +1) = (y-2)/(3-2)
4(x+1)/14 = y-2
=> y = \(\frac{2x}{7}+\frac{16}{7}\)