K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

VTPT: vecto pháp tuyến

a) ✽ pt AB:

ta có \(\overrightarrow{AB}\)= (-1;-5) nên VTPT của AB là: (5;-1). Mà A(2;3) ϵ AB

nên pt AB: 5(x-2) -1.(y-3)=0 ⇔ 5x - y -7=0

✽ pt BC:

Ta có \(\overrightarrow{BC}\)= (3;6) nên VTPT của BC là : (6;-3). Mà B(1;-2) ϵ BC

nên pt BC: 6(x-1) -3(y+2)=0 ⇔ 2x -y -4=0

✽ pt AC:

ta có \(\overrightarrow{AC}=\left(2;1\right)\)nên VTPT của AC là (-1;2). Mà A(2;3) ϵ AC

nên pt AC: - (x-2) +2(y-3)=0 ⇔ -x +2y -4=0

b)pt AH:

AH có VTPT là \(\overrightarrow{BC}\)= (3;6) và qua A(2;3) nên ptAH: 3(x-2)+6(y-3)=0

⇔ x +2y -4=0

Tọa độ H là nghiệm của hệ pt \(\left\{{}\begin{matrix}\text{2x -y -4=0}\\x+2y-4=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\frac{12}{5}\\y=\frac{4}{5}\end{matrix}\right.\)

H(\(\frac{12}{5}\);\(\frac{4}{5}\)) ⇒ AH = \(\sqrt{\left(\frac{12}{5}-2\right)^2+\left(\frac{4}{5}-3\right)^2}\)=\(\sqrt{5}\)

BC = \(\sqrt{3^2+6^2}\)=\(3\sqrt{5}\)

SABC= 0,5.\(\sqrt{5}\).\(3\sqrt{5}\)=7,5 (đvdt)

c) Tọa độ giao điểm là nghiệm của hệ pt: \(\left\{{}\begin{matrix}\text{-x +2y -4=0}\\x+y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

d) cách 1: ta có d' // AB nên d': 5x - y + c=0 (c≠-7)

mà B(1;-2) ϵ d' nên 5 + 2 +c =0 ⇔ c = -7 (loại)

Vậy không có pt đường thẳng nào đi qua B và // với AB

cách 2 (dùng tiên đề Ơ-clit)

ta có B ϵ d', B ϵ AB mà d' // AB nên d' \(\equiv\) AB

( qua 1 điểm nằm ngoài một đường thẳng, có 1 và chỉ 1 đường thẳng song song với đường thẳng đã cho)

điều này mâu thuẫn với đề bài (d'//AB) do đó không có pt d'

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.b) Đi qua hai điểm M(1;-1) và N(3;2).c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).Tính khoảng cách từ điểm C đến đường thẳng AB.Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát...
Đọc tiếp

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:

a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.

b) Đi qua hai điểm M(1;-1) và N(3;2).

c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).

Tính khoảng cách từ điểm C đến đường thẳng AB.

Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:

a)   3 caïnh AB, AC, BC

b) Ñöôøng thaúng qua A vaø song song vôùi BC

c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC

d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC

e) Ñöôøng trung tröïc cuûa caïnh BC

Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:

a)  Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC

b)  Viết phương trình đđöôøng trung bình song song cạnh AB

c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN

d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong  tam giaùc ABC   

Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và

a) đi qua điểm A(3;5).

b) tiếp xúc với đường thẳng có pt x + y = 1.

 

0

a: vecto AB=(2;1)

=>VTPT là (-1;2)

Phương trình AB là:

-1(x-2)+2(y-0)=0

=>-x+2y+2=0

vecto AC=(-1;2)

=>VTPT là (2;1)

PT AC là:

2(x-2)+1(y-0)=0

=>2x+y-4=0

vecto BC=(-3;1)

=>VTPT là (1;3)

Phương trình BC là:

1(x-4)+3(y-1)=0

=>x+3y-7=0

b: vecto BC=(-3;1)

=>AH có VTPT là (-3;1)

Phương trình AH là;

-3(x-2)+1(y-0)=0

=>-3x+6+y=0

c: Tọa độ I là trung điểm của AC là;

x=(2+1)/2=1,5 và y=(0+2)/2=1

vecto AC=(-1;2)

=>(d) có VTPT là (-1;2) và đi qua I(1,5;1)

Phương trình trung trực của AC là;

-1(x-1,5)+2(y-1)=0

=>-x+1,5+2y-2=0

=>-x+2y-0,5=0

 

NM
31 tháng 3 2022

ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)

Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)

Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC

khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)

Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)