K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Dù hiểu đề là tìm tọa độ điểm $M$ nhưng lần sau bạn vẫn cần viết đầy đủ yêu cầu của đề ra nhé.

Lời giải:

Giả sử tọa độ điểm $M$ là $(a,b)$

\(\overrightarrow{MA}=(-3-a; 3-b)\)

\(\overrightarrow{BC}=(1;-9)\)

\(\overrightarrow{CM}=(a-2; b+5)\)

Để $2\overrightarrow{MA}-\overrightarrow{BC}=4\overrightarrow{CM}$ thì:

\(\Leftrightarrow 2(-3-a; 3-b)-(1;-9)=4(a-2; b+5)\)

\(\Leftrightarrow \left\{\begin{matrix} 2(-3-a)-1=4(a-2)\\ 2(3-b)+9=4(b+5)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{6}\\ b=\frac{-5}{6}\end{matrix}\right.\)

31 tháng 10 2020

Vâng e cám mơn

26 tháng 7 2019

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

1 tháng 10 2019

bạn tự đi mà lm

27 tháng 7 2019
https://i.imgur.com/Ofq4upt.jpg
AH
Akai Haruma
Giáo viên
15 tháng 10 2020

Lời giải:
Vì $O$ là tâm hình bình hành nên $O$ là trung điểm của $AC, BD$

$\Rightarrow \overrightarrow{OA}, \overrightarrow{OC}; \overrightarrow{OB}, \overrightarrow{OD}$ là 2 cặp vecto đối nhau

$\Rightarrow \overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}$ (đpcm)

b) Theo phần a ta có:

\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OC}\)

\(=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{OD}\)

\(=(\overrightarrow{MO}+\overrightarrow{OB})+(\overrightarrow{MO}+\overrightarrow{OD})=\overrightarrow{MB}+\overrightarrow{MD}\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Hình vẽ:
Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

27 tháng 7 2019

Chương I: VÉC TƠ