Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vị trí máy bay vào lúc 14 giờ 30 phút là: \(\left\{ \begin{array}{l}x = \frac{{1600}}{3} - \frac{{1400}}{3}.\frac{1}{2} = 300\\y = \frac{{1900}}{3} - \frac{{1400}}{3}.\frac{1}{2} = 400\end{array} \right.\)
Vậy tọa độ máy bay là \(\left( {300;400} \right)\). Thời điểm này máy bay đã xuất hiện trên màn hình ra đa.
b) Ta có: \(MO = \sqrt {{{\left( {\frac{{1600}}{3} - \frac{{1400}}{3}t} \right)}^2} + {{\left( {\frac{{1900}}{3} - \frac{{1400}}{3}t} \right)}^2}} \).
Do có \(M{O_{\min }} = 50\sqrt 2 \Leftrightarrow t = \frac{5}{4}\).
Vậy sau khi bay \(\frac{5}{4} = 1,25\) (giờ) tức là lúc 15h15p thì máy bay gần ra đa nhất và khoảng cách từ ra đa đến máy bay khi đó là \(50\sqrt 2 \left( {km} \right)\).
c) Máy bay rời khỏi màn hình ra đa khi mà khoảng cách từ M đến O lớn hơn 500km tức là:
\(MO = \sqrt {{{\left( {\frac{{1600}}{3} - \frac{{1400}}{3}t} \right)}^2} + {{\left( {\frac{{1900}}{3} - \frac{{1400}}{3}t} \right)}^2}} \ge 500 \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{2}\\t = 2\end{array} \right.\)
Vậy sau khi bay được 2h tức là lúc 16h thì máy bay thoát khỏi màn hình ra đa.
Sau khi xuất phát được 2 giờ tức là máy bay đi được \(\frac{2}{3}\) quãng đường thì ta có máy bay ở điểm M hay là ta có \(\overrightarrow {AM} = \frac{2}{3}\overrightarrow {AB} \)
Tọa độ vectơ \(\overrightarrow {AB} = \left( { - 300;400} \right) \Rightarrow \overrightarrow {AM} = \left( { - 200;\frac{{800}}{3}} \right) \Rightarrow \overrightarrow {OM} = \overrightarrow {AM} - \overrightarrow {AO} = \left( { - 600;\frac{{650}}{3}} \right)\)
Vậy tọa độ máy bay sau 2 giờ xuất phát là: \(\left( { - 600;\frac{{650}}{3}} \right)\)
a) Tàu A di chuyển theo hướng vecto \(\overrightarrow {{u_1}} = \left( { - 35;25} \right)\)
Tàu B di chuyển theo hướng vecto \(\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\)
Gọi \(\alpha \) là góc giữa hai đường đi của hai tàu, ta có:
\(\cos \alpha = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {\left( { - 35} \right).\left( { - 30} \right) + 25.\left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 35} \right)}^2} + {{25}^2}} .\sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} = \frac{1}{{5\sqrt {74} }}.\)
b) Sau t giờ, vị trí của tàu A là điểm M có tọa độ là: \(M\left( {3 - 35t; - 4 + 25t} \right)\)
Sau t giờ, vị trí của tàu B là điểm N có tọa độ là: \(N\left( {4 - 30t;3 - 40t} \right)\)
Do đó, \(\overrightarrow {MN} = \sqrt {{{\left( {1 + 5t} \right)}^2} + {{\left( {7 - 65t} \right)}^2}} = \sqrt {4250{t^2} - 900t + 50} = \sqrt {4250{{\left( {t - \frac{9}{{85}}} \right)}^2} + \frac{{40}}{{17}}} \ge \sqrt {\frac{{40}}{{17}}} \approx 1,53\left( {km} \right)\)
Suy ra MN nhỏ nhất xấp xỉ 1,53km khi \(t = \frac{9}{{85}}\)
Vậy sau \(\frac{9}{{85}}\) giờ kể từ thời điểm xuất phát thì hai tàu gần nhau nhất và cách nhau 1,53km
c) Vị trí ban đầu của tàu A tại \({M_o}\) ứng với \(t = 0\) , khi đó \({M_o}\left( {3; - 4} \right)\)
Tàu B di chuyển theo đường thẳng có vecto pháp tuyến \(\overrightarrow n = \left( {40; - 30} \right)\) và đi qua điểm \(K\left( {4;3} \right)\) Phương trình tổng quát của là: \(40\left( {x - 4} \right) - 30\left( {y - 3} \right) = 0 \Leftrightarrow 4x - 3y - 7 = 0\) \(\Delta \)
Ta có: \(d\left( {{M_o},\Delta } \right) = \frac{{\left| {4.3 - 3.\left( { - 4} \right) - 7} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{17}}{5} = 3,4\left( {km} \right)\)
Vậy nếu tàu A đứng yên ở vị trí ban đầu còn tàu B di chuyển thì khoảng cách ngắn nhất giữa hai tàu bằng 3,4km.
Để xác định tọa độ của máy bay ta phải lập phương trình quỹ đạo bay của máy bay hay chính là lập phương trình đường thẳng.
Tọa độ của vecto \(\overrightarrow {OM} \) là tọa độ của điểm M (trong đó O là gốc tọa độ)
a) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow v = \left( {3; - 4} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n = \left( {4;3} \right)\) và đi qua \(A(1;2)\)
Ta có phương trình tổng quát là
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Điểm M thuộc trục hoành nên tung độ bằng 0
Thay \(y = 0\) vào phương trình \(4x + 3y - 10 = 0\) ta tìm được \(x = \frac{5}{2}\)
Vậy \(\Delta \) cắt trục hoành tại điểm \(M\left( {\frac{5}{2};0} \right)\)
Gọi M (x; y) là vị trí của tâm bão tại thời điểm t giờ.
Tâm bão chuyển động đều từ A (13,8; 108,3) đến B (14,1;106,3).
Khi đó ta có: \(\overrightarrow {AM} = \frac{t}{{12}}.\overrightarrow {AB} \)
\(\begin{array}{l} \Leftrightarrow (x - 13,8;y - 108,3) = \frac{t}{{12}}.(14,1 - 13,8;106,3 - 108,3)\\ \Leftrightarrow (x - 13,8;y - 108,3) = \frac{t}{{12}}.(0,3; - 2)\\ \Leftrightarrow \left\{ \begin{array}{l}x - 13,8 = \frac{t}{{40}}\\y - 108,3 = - \frac{t}{6}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 13,8 + \frac{t}{{40}}\\y = 108,3 - \frac{t}{6}\end{array} \right.\end{array}\)
Vậy tại thời điểm t giờ, tâm bão ở vị trí \(M\left( {13,8 - \frac{t}{{40}};108,3 - \frac{t}{6}} \right)\)
Khi tới vị trị M(3;4), vật bị văng khỏi quỹ đạo tròn và ngay sau đó bay theo hướng tiếp tuyến d của đường tròn tại điểm M. Do đó, d đi qua điểm M và nhận vecto \(\overrightarrow {OM} = \left( {3;4} \right)\) làm vecto pháp tuyến. Vậy phương trình của d là: \(3\left( {x - 3} \right) + 4\left( {y - 4} \right) = 0 \Leftrightarrow 3x + 4y - 25 = 0\).
Để xác định tọa độ của máy bay trực thăng ta sử dụng biểu thức tọa độ của 2 vectơ