Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)
b) Thay \(t = 2\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\) ta được \(\left\{ \begin{array}{l}x = 1 + 40.2 = 81\\y = 1 + 30.2 = 61\end{array} \right.\)
Vậy khi \(t = 2\) thì tọa độ của ô tô là \(\left( {81;61} \right)\)
Thay \(t = 4\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\) ta được \(\left\{ \begin{array}{l}x = 1 + 40.4 = 161\\y = 1 + 30.4 = 121\end{array} \right.\)
Vậy khi \(t = 4\) thì tọa độ của ô tô là \(\left( {161;121} \right)\)
1,\(\overrightarrow{n}\)d=(2;-4)
d: 2(x+1)-4(y-1)=0⇔2x-4y+6=0
2) AM nhỏ nhất khi AM vuông góc với D
⇒\(\overrightarrow{n}\)AM=(4;2)
AM: 4(x+1)+2(y-1)=0⇔4x+2y+2=0
M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1
4x+2y=-2
⇒M(-1/2;0)
a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = - 9 + 8t\\y = 5 - 4t\end{array} \right.\)
b) Thay \(y = 1\) vào phương trình \(y = 5 - 4t\) ta được \(1 = 5 - 4t \Rightarrow t = 1\)
Thay \(t = 1\) vào phương trình \(x = - 9 + 8t\), ta được \(x = - 1\)
Vậy \(P( - 1;1)\)
Gọi B(x; y) là vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ.
Do tàu khởi hành từ A đi chuyển với vận tốc được biểu thị bởi vectơ \(\overrightarrow v = \left( {3;4} \right)\) nên cứ sau mỗi giờ, tàu đi chuyển được một quãng bằng \(\left| {\overrightarrow v } \right|\).
Vậy sau 1,5 giờ tàu di chuyển tới B, ta được: \(\overrightarrow {AB} = 1,5.\overrightarrow v \)
\(\begin{array}{l} \Leftrightarrow (x - 1;y - 2) = 1,5\;.\left( {3;4} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 4,5\\y - 2 = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5,5\\y = 8\end{array} \right.\end{array}\)
Vậy sau 1,5 tàu ở vị trí (trên mặt phẳng tọa độ) là B(5,5; 8).
Giả sử đường thẳng cần tìm có phương trình dạng \(\frac{x}{a}+\frac{y}{b}=1\) với \(ab\ne0\) suy ra \(\frac{1}{a}+\frac{2}{b}=1\) (1) và \(\left|a\right|=\left|b\right|\) (2)
Từ (2) suy ra hoặc a=b hoặc a=-b.
- Khi a=b, thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}=1\Leftrightarrow a=3\)
Vậy \(\Delta:\frac{x}{3}+\frac{y}{3}=1\) hay \(x+y-3=0\)
- Khi a=-b thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}=1\Leftrightarrow a=-1\) vậy \(\Delta:\frac{x}{-1}+\frac{y}{1}=1\) hay \(x-y+1=0\)
Vậy ta tìm đươc 2 đường thẳng đi qua M và chắn trên 2 trục tọa độ các đoạn thẳng bằng nhau là
\(x+y-3=0\) và \(x-y+1=0\)
O b a 2 1 y x
a) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow v = \left( {3; - 4} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n = \left( {4;3} \right)\) và đi qua \(A(1;2)\)
Ta có phương trình tổng quát là
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Điểm M thuộc trục hoành nên tung độ bằng 0
Thay \(y = 0\) vào phương trình \(4x + 3y - 10 = 0\) ta tìm được \(x = \frac{5}{2}\)
Vậy \(\Delta \) cắt trục hoành tại điểm \(M\left( {\frac{5}{2};0} \right)\)