Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì M thuộc đường trung trực của đoạn thẳng AB nên MA = MB.
Vì N thuộc đường trung trực của đoạn thẳng AB nên NA = NB.
+) Xét ∆AMN và ∆BMN có:
MA = MB ( chứng minh trên)
NA = NB (chứng minh trên)
MN chung
Suy ra: ∆AMN = ∆BMN (c.c.c) nên các khẳng định (A), (B), (C) sai, (D) đúng.
Hướng dẫn:
Vì M thuộc đường trung trực của AB
=> MA = MB
N thuộc đường trung trực của AB
=> NA = NB
Do đó ∆AMN = ∆BMN (c.c.c)
47. Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB. Chứng minh
∆AMN = ∆BMN.
Hướng dẫn:
Vì M thuộc đường trung trực của AB
=> MA = MB
N thuộc đường trung trực của AB
=> NA = NB
Do đó ∆AMN = ∆BMN (c.c.c)
Vì M thuộc đường trung trực của AB
=> MA = MB
N thuộc đường trung trực của AB
=> NA = NB
Do đó ∆AMN = ∆BMN (c.c.c)
M A B N
Vì M, N thuộc đường trung trực của AB nên MA = MB; NA = NB
Xét tam giác AMN và tam giác BMN có:
MA = MB
NA = NB
MN chung
=> Tam giác AMN = Tam giác BMN (c.c.c)
a: Xét ΔMAI vuông tại I và ΔMBI vuông tại I có
MI chung
IA=IB
Do đó: ΔMAI=ΔMBI
b: Ta có: ΔMAI=ΔMBI
=>MA=MB và \(\widehat{AMI}=\widehat{BMI}\)
=>\(\widehat{AMN}=\widehat{BMN}\)
Xét ΔMAN và ΔMBN có
MA=MB
\(\widehat{AMN}=\widehat{BMN}\)
MN chung
Do đó: ΔMAN=ΔMBN
=>\(\widehat{MAN}=\widehat{MBN}\)
Xét ΔMIB vuông tại I và ΔNIA vuông tại I có
IM=IN
IA=IB
Do đó: ΔMIB=ΔNIA
=>\(\widehat{IMB}=\widehat{INA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MB//AN
Chọn D