K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2

\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)

\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)

\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)

25 tháng 1 2022

=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)

dài quá máy mình ko tải nủi

26 tháng 1 2016

làm được mấy vế thì làm ko cần làm hết đâu! giúp nha!

22 tháng 4 2018

2011015

3 tháng 10 2018

Con tham khảo bài tương tự tại link dưới đây nhé:

Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6 - Học toán với OnlineMath

3 tháng 10 2018

Con tham khảo bài tương tự tại link dưới đây nhé:

Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6 - Học toán với OnlineMath

21 tháng 1 2018

a.

Theo đề bài ta có:

-1 - 1 - ... - 1 + a101 = 0

=> - 50 + a101 = 0=> a101 = 50

b,

-2017 < |a+4| ≤ 2

=> 0 ≤ |a+4| ≤ 2

=> -2 ≤ a+4 ≤ 2

=> -6 ≤ a ≤ -2

Giả sử 100 số đó đôi một khác nhau

Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100

Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100

⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)

⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.

Vì vậy điều giả sử sai, ta có điều phải chứng minh

14 tháng 12 2017

Bạn xem hướng dẫn ở đây:

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath