Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+3}{5}=\frac{y-2}{2}=\frac{z+1}{-9}\)
\(=\frac{5\left(x+3\right)+3\left(y-2\right)+\left(z+1\right)}{5.5+3.2-9}\)
\(=\frac{56+15-6+1}{22}=3\)
\(\Rightarrow x+y+z=3\left(5+2-9\right)-\left(3-2+1\right)=-8\)
\(\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2-\left(3x-5y\right)^2=0\)
\(\Leftrightarrow25x^2-2.3.5xy+9x^2-16z^2-\left(9x^2-2.3.5xy+25y^2\right)\)
\(\Leftrightarrow16\left(x^2-z^2-y^2\right)=0\Leftrightarrow x^2=y^2+z^2\)
=> x, y, z là độ dài 3 cạnh của một tam giác vuông.
Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
\(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau : \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình ta có:
\(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\)
\(\Leftrightarrow xy-xz+y^2-z^2=0\)
\(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
\(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)
* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )
Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)
Chứng minh tương tự khi đó :
\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)
\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)
\(\Rightarrow P\le2016\)