Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có nghiệm của phương trình x2-1 là +1 vậy tổng nghiệm của pt này là 0
tiếp tục với x2-2 ngiệm pt này là +\(\sqrt{2}\)và -\(\sqrt{2}\) tổng hai ngiệm của pt này cũng bằng không
tương tự với x2-3 ,x2-4
-> tổng tất cả nghiệm của pt trên bằng 0
a) Ta có:
\(A=1+2+2^2+2^3+...+2^{2015}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)-2^{2016}\)
\(A=7+...+7\cdot2^{2014}-2^{2016}\)
\(A=7\cdot\left(1+...+2^{2014}\right)-2^{2016}\)
Lại có: \(2^4\equiv2\left(mod7\right)\Leftrightarrow\left(2^4\right)^{504}=2^{2016}\equiv2\left(mod7\right)\)
\(\Rightarrow A\equiv-2\left(mod7\right)\)
Vậy A chia 7 dư -2 hoặc 5
b) \(PT\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow x\in\left\{0;-2-;-1\right\}\)
=> Tổng các nghiệm là: -3
tổng nghiệm bằng 0 nhé, vì \(x^2=a\left(a>0\right)\Leftrightarrow\orbr{\begin{cases}x=\sqrt{a}\\x=-\sqrt{a}\end{cases}}\)
do đó nghiệm đối nhau từng cặp, nên tổng bằng 0
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
1)\(ĐKXĐ:x\ne0\)
Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)
\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)
\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)
\(=2a+a^2-4a+4-a^2+2a=4\)
\(\Rightarrow\left(x+2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)
a, \(x^4-2x^3+4x^2-3x+2=x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2\)
\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(=\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\) (dpdcm)
b, \(x^6+x^5+x^4+x^2+x+1=x^4\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^4+1\right)=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(x^4+1\right)>0\) (đpcm)
Xét x2 - 1 có các nghiệm là \(\sqrt{1}và-\sqrt{1}\) --> tổng hai nghiệm này là 0.
Xét x2 - 2 có các nghiệm là \(\sqrt{2}và-\sqrt{2}\) --> tổng hai nghiệm này là 0.
.......
Xét x2 - 2015 có các nghiệm là \(\sqrt{2015}và-\sqrt{2015}\) --> tổng hai nghiệm này là 0.
=> Tổng tất cả các các nghiệm của phương trình là 0.
Ai tích mình mk sẽ tích lại!
tìm số nghiệm thôi ko phải tính tổng