Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
Bài 1:
ĐKXĐ: \(2-3x>0\Rightarrow x< \frac{2}{3}\)
\(\Leftrightarrow3x-m+5+2-3x=2x+2m-1\)
\(\Leftrightarrow2x=8-3m\Rightarrow x=\frac{8-3m}{2}\)
Để pt đã cho có nghiệm
\(\Rightarrow\frac{8-3m}{2}< \frac{2}{3}\Leftrightarrow24-9m< 4\Rightarrow m>\frac{20}{9}\)
Bài 2:
\(\Leftrightarrow\left(x-2\right)^4+4\left(x^2+2x-1\right)^4-5\left(x-2\right)^2\left(x^2+2x-1\right)^2=0\)
Đặt \(\left\{{}\begin{matrix}\left(x-2\right)^2=a\ge0\\\left(x^2+2x-1\right)^2=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2+4b^2-5ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=\left(x^2+2x-1\right)^2\\\left(x-2\right)^2=4\left(x^2+2x-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x^2+2x-1+x-2\right)\left(x^2+2x-1-x+2\right)=0\\\left(2x^2+4x-2+x-2\right)\left(2x^2+4x-2-x+2\right)=0\end{matrix}\right.\)
Bạn tự giải nốt, dạng cơ bản
ĐKXĐ: \(0\le x;y\le3\)
Trừ vế cho vế: \(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)
\(\Leftrightarrow\frac{2\left(x-y\right)}{\sqrt{2x}+\sqrt{2y}}+\frac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x}+\sqrt{2y}}+\frac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)
\(\Leftrightarrow x=y\)
Thay vào pt đầu: \(\sqrt{2x}+\sqrt{3-x}=m\)
\(\left(\sqrt{2x}+\sqrt{3-x}\right)^2\le\left(2+1\right)\left(x+3-x\right)=9\)
\(\Rightarrow\sqrt{2x}+\sqrt{3-x}\le3\)
\(\sqrt{2x}+\sqrt{3-x}\ge\sqrt{2x+3-x}=\sqrt{3+x}\ge\sqrt{3}\)
\(\Rightarrow\sqrt{3}\le m\le3\) mà m nguyên \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\) \(\Rightarrow\sum m=5\)
ĐKXĐ: \(-2\le x\le8\)
\(\Leftrightarrow\sqrt{x+2}-3+1-\sqrt{8-x}=3x^3-21x^2+2x-14\)
\(\Leftrightarrow\frac{x-7}{\sqrt{x+2}+3}+\frac{x-7}{1+\sqrt{8-x}}=\left(x-7\right)\left(3x^2+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\frac{1}{\sqrt{x+2}+3}+\frac{1}{1+\sqrt{8-x}}=3x^2+2\left(1\right)\end{matrix}\right.\)
Xét (1), do \(\left\{{}\begin{matrix}\sqrt{x+2}\ge0\\\sqrt{8-x}\ge0\end{matrix}\right.\) \(\Rightarrow VT< \frac{1}{3}+1< 2\)
\(VP=3x^2+2\ge2>VT\)
\(\Rightarrow\) (1) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=7\)