Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái đó là zĩ nhiên
vì từ đầu bài
nen x=y=z
Trong 3 số x, y, z theo đề bài không có số lớn nhất => không có số nhỏ nhất => x=y=z
Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi
Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)
Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)
Suy ra: \(1⋮x+y+z+1\)
\(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))
\(\Leftrightarrow x=y=z=0\)
Vậy \(x=y=z=0\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Cô Huyền giải nhầm rồi.
\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)
\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)
\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)
\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương
Xét \(y\ge0\)
\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)
\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)
\(\Leftrightarrow y=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Tương tự cho trường hợp còn lại
\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)
\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)
\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)
TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)
TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)
Ta thấy (x-3)2,(x-2)2+|x-1| luôn luôn dương,x dương hoặc âm
=>(x-3)2 luôn chẵn; (x-2)2 luôn lẻ; |x-1| luôn chẵn; x lẻ (theo giả thiết 1)
=>(chẵn +chẵn )+(lẻ +lẻ)
=chẵn + chẵn
=chẵn chia hết 2.Mà 2013 ko chia hết 2
=>vô nghiệm (1)
=>(x-3)2 luôn lẻ; (x-2)2 luôn chẵn; |x-1| luôn lẻ; x chẵn (theo giả thiết 2)
=>(lẻ + lẻ )+(chẵn +chẵn)
=chẵn + chẵn
= chẵn cũng chia hết 2.Mà 2013 ko chia hết 2
=>vô nghiệm (2)
Từ (1) và (2) =>pt trên vô nghiệm vs mọi x
ko tồn tại nhé bn