Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-10+25-x^2+12x+36+10=0\)
\(\Leftrightarrow2x+71=0\)
\(\Leftrightarrow2x=-71\)
\(\Leftrightarrow x=\frac{-71}{2}\)
[ (x - 5)2 - (x - 6)2 ] + 10 =0
[(x-5)+(x-6)].[(x-5)-(x-6)] = -10
(2x-11).1 = -10
2x =1
x = 0,5
cách làm là như thế còn ko biết mk có tính sai ko!!!!
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
\(2\left(x+3\right)-x^2-3x=0\)
=>\(2\left(x+3\right)-x\left(x+3\right)=0\)
=>\(\left(2-x\right)\left(x+3\right)=0\)
=>\(\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
Vậy ...
\(2\left(x+3\right)-x^2-3x=0\)
\(\Rightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Rightarrow\left(2-x\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a) \(\left(x+2\right)^3-x^2.\left(x+6\right)\)
\(=x^3+6x^2+12x+8-x^3-6x^2\)
\(=12x+8\)
b) \(\left(x-2\right)\left(x+2\right)-\left(x+1\right)^3-2x.\left(x-1\right)^2\)
\(=x^2-4-x^3-3x^2-3x-1-2x^3+4x^2-2x\)
\(=-3x^3+2x^2-5x-5\)
\(3x^2+x+11=0\)
\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\)
\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\)
Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)
=> PT vô nghiêm
\(3x^2+x+11=0\)
\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)
\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)
\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)
=> Phương Trình Vô Nghiệm
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a,=(x\(^2\)-6x+9)+10-9
=(x-3)\(^2\)+1
Mà(x-3)\(^2\)\(\ge\)0
nên (x-3)\(^2\)+1>0
b,= -(-4x+x\(^2\))-5
= -(4-4x+x\(^2\))-5+4
= -(2-x)\(^2\)-1
Mà -(2-x)\(^2\)\(\le\)0
nên -(2-x)\(^2\)-1< 0
Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :) Thankssssss