\(\frac{2}{4.7}-\frac{3}{5.9}+\frac{2}{7.10}-\frac{3}{9.12}+...+\frac{2}{301.304}-\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

\(C=\frac{2}{4.7}-\frac{3}{5.9}+\frac{2}{7.10}-\frac{3}{9.13}+...+\frac{2}{301.304}-\frac{3}{401.405}\)

\(C=\left(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{301.304}\right)-\left(\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{401.405}\right)\)

\(C=\frac{2}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{301.304}\right)-\frac{3}{4}\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{401.405}\right)\)

\(C=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right)-\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+..+\frac{1}{401}-\frac{1}{405}\right)\) \(C=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{304}\right)-\frac{3}{4}\left(\frac{1}{5}-\frac{1}{405}\right)\)

\(C=\frac{25}{152}-\frac{4}{27}\)

\(C=\frac{67}{4104}\)

5 tháng 3 2018

ra 67/1014

12 tháng 8 2015

B = \(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{301.304}\)

B = \(\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{301}-\frac{1}{304}\right)\)

B = \(\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{304}\right)\)

B = \(\frac{1}{3}.\frac{75}{304}\)

B = \(\frac{25}{304}\)

12 tháng 8 2015

\(B=\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{301.304}\right):3\)

\(\Rightarrow B=\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right):3\)

\(\Rightarrow B=\left(\frac{1}{4}-\frac{1}{304}\right):3\)

\(\Rightarrow B=\frac{75}{304}:3=\frac{25}{304}\)

12 tháng 8 2015

C = 2/1.4 + 2/4.7 + 2/7.10 + .... + 2/601.604

C = 2/3 . ( 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/601.604 )

C = 2/3 . ( 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/601 - 1/604 )

C = 2/3 . ( 1 - 1/604 )

C = 2/3 . 603/604

C = 201/302

12 tháng 8 2015

\(C=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+.....+\frac{2}{601.604}=\frac{2}{3}\cdot\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{601.604}\right)=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{601}-\frac{1}{604}\right)\)=\(\frac{2}{3}\cdot\left(1-\frac{1}{604}\right)=\frac{2}{3}\cdot\frac{603}{604}=\frac{201}{302}\)

\(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

24 tháng 8 2015

\(B=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-...-\frac{2}{100}\right)\)

\(B=\frac{1}{3}.\left(2-\frac{2}{100}\right)=\frac{1}{3}.\frac{99}{50}==\frac{33}{50}\)

6 tháng 8 2023

\(A=\dfrac{2}{4.7}-\dfrac{3}{5.9}+\dfrac{2}{7.10}-\dfrac{3}{9.13}+...+\dfrac{2}{301.304}-\dfrac{3}{401.405}\)

\(A=\dfrac{2}{4.7}+\dfrac{2}{7.10}+\dfrac{2}{301.304}...-\left(\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{401.405}\right)\)

\(A=2\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{301.304}\right)...-3\left(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{401.405}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{301}-\dfrac{1}{304}\right)...-3\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{401}-\dfrac{1}{405}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{304}\right)-3\left(\dfrac{1}{5}-\dfrac{1}{405}\right)\)

\(A=2\left(\dfrac{76}{304}-\dfrac{1}{304}\right)-3\left(\dfrac{81}{5}-\dfrac{1}{405}\right)\)

\(A=2.\dfrac{75}{304}-3.\dfrac{80}{405}=\dfrac{75}{152}-\dfrac{80}{135}=\dfrac{10125-12160}{152.135}=-\dfrac{2035}{152.135}=-\dfrac{407}{4104}\)

11 tháng 9 2016

\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{33}{50}\)

11 tháng 9 2016

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(\Rightarrow A=\frac{33}{50}\)