Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 x 2 + 2 x 3 + ... + 99 x 100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100
3S = 99 x 100 x 101 = 999900
S = 999900 : 3 = 333300
a,Thay x=1 vào đt ta có
\(P\left(2\right)=P\left(1\right)+2\)
\(P\left(2\right)=3\)
Tương tự ta có
\(P\left(3\right)=P\left(2\right)+2\)
\(P\left(3\right)=5\)
\(P\left(4\right)=7\)
\(P\left(5\right)=9\)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow\)\(x+329=0\) (vì 1/327 + 1/326 + 1/325 + 1/324 + 1/5 khác 0 )
\(\Leftrightarrow\)\(x=-329\)
Bài 1 :
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)
\(\Rightarrow\)\(x+329=0\)
\(\Rightarrow\)\(x=-329\)
Vậy \(x=-329\)
a) x - 3/97 + x - 2/98 = x - 1/99 + x/100
<=> x + 1/99 + 1 + x + 2/98 + 1 + x + 3/97 + 1 + (x + 4/96 + 1 + x + 5/95 + 1 + x + 10/90 + 1) = 0
<=> x + 100/99 + x + 100/98 + x + 100/97 + (x + 100/96 + x + 100/95 + x + 100/90) = 0
<=> (x + 100)(1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90) = 0
Mà 1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90 khác 0
=> x + 100 = 0
=> x = -100
c) (1/1.2 + 1/2.3 + ... + 1/99.100) - 2x = 1/2
<=> (1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100) - 2x = 1/2
<=> (1 - 1/100) - 2x = 1/2
<=> 99/100 - 2x = 1/2
<=> -2x = 1/2 - 99/100
<=> -2x = -49/100
<=> x = 49/200
=> x = 49/200
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Rightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}>0\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
Lời giải:
$A=x^2+x^4+x^6+...+x^{100}$Nếu $x=\pm 1$ thì:
$A=1+1+....+1$
Số lần xuất hiện của 1 là: $(100-2):2+1=50$
$\Rightarrow A=50.1=50$
Nếu $x\neq \pm 1$ thì:
$A=x^2+x^4+x^6+...+x^{100}$
$x^2A=x^4+x^6+x^8+....+x^{102}$
$\Rightarrow x^2A-A=x^{102}-x^2$
$\Rightarrow A(x^2-1)=x^{102}-x^2$
$\Rightarrow A=\frac{x^{102}-x^2}{x^2-1}$
Lời giải:
$B=x+x^3+x^5+....+x^{99}$
Nếu $x=1$ thì:
$B=1+1+1+....+1$
Số lần xuất hiện của 1: $(99-1):2+1=50$
$\Rightarrow B=1.50=50$
Nếu $x=-1$ thì:
$B=(-1)+(-1)+...+(-1)$
Số lần xuất hiện của -1 là: $(99-1):2+1=50$
$\Rightarrow B=(-1).50=-50$
Nếu $x\neq \pm 1$
$B=x+x^3+x^5+....+x^{99}$
$x^2B=x^3+x^5+x^7+...+x^{101}$
$\Rightarrow x^2B-B=x^{101}-x$
$\Rightarrow B(x^2-1)=x^{101}-x$
$\Rightarrow B=\frac{x^{101}-x}{x^2-1}$
3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50
a; \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + ... + \(\dfrac{5}{132}\)
= 5.(\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ..+ \(\dfrac{1}{132}\))
= 5.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{11.12}\))
= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ...+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))
= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))
= 5.(\(\dfrac{6}{12}\) - \(\dfrac{1}{12}\))
= 5.\(\dfrac{5}{12}\)
= \(\dfrac{25}{12}\)
Ta có :
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}....\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4....99}.\frac{4.5.6....101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
Ủng hộ mk nha !!! ^_^
\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)