K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

\(B=\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)

\(2B=\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(B-2B=\)\(\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)\(-\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(-B=\dfrac{1-2^{2009}}{1-2^{2009}}\)

B=-1

6 tháng 4 2017

ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)

B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)

ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)

vậy A<B

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

24 tháng 4 2017

Gọi \(1+2+2^2+2^3+...+2^{2008}\) là D.

Ta có:

\(D=1+2+2^2+2^3+...+2^{2008}\)

\(2D=2+2^2+2^3+2^4...+2^{2009}\)

\(2D-D=\left(2+2^2+2^3+2^4...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(D=2^{2009}-1\)

\(B=\dfrac{2^{2009}-1}{1-2^{2009}}\\ =\dfrac{\left(-1\right)\cdot\left(1-2^{2009}\right)}{1-2^{2009}}\\ =-1\)

AH
Akai Haruma
Giáo viên
14 tháng 4 2018

Lời giải:

Xét tử số:
\(X=1+2+2^2+2^3+....+2^{2008}\)

\(\Rightarrow 2X=2+2^2+2^3+...+2^{2008}+2^{2009}\)

Lấy vế sau trừ đi vế trước:

\(2X-X=(2+2^2+2^3+...+2^{2009})-(1+2+2^2+2^3+...+2^{2008})\)

\(X=2^{2009}-1\)

Do đó:

\(B=\frac{1+2+2^3+...+2^{2008}}{1-2^{2009}}=\frac{2^{2009}-1}{1-2^{2009}}=-1\)

15 tháng 4 2018

\(B=\dfrac{1+2+2^2+2^3+...........+2^{2008}}{1-2^{2009}}\)

Ta xét tử số:

Đặt A = \(1+2+2^2+2^3+...........+2^{2008}\)

\(2A=2+2^2+2^3+2^4+..........+2^{2009}\)

\(2A-A=\left(2+2^2+2^3+2^4+......+2^{2009}\right)-\left(1+2+2^2+2^3+.........+2^{2008}\right)\)

A = \(2^{2009}-1\)

Thay vào B ta lại có:

\(\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1}{1}=-1\)

Vậy B = -1

8 tháng 4 2018

Đặt \(A=1+2+2^2+...+2^{2008}\)

\(2A=2+2^2+2^3+...+2^{2009}\)

\(2A-A=2+2^2+2^3+...+2^{2009}-\left(1+2+2^2+...+2^{2008}\right)\)

\(A=2^{2009}-1\)

\(B=\dfrac{A}{1-2^{2009}}=-1\)

8 tháng 4 2018

Giả sử ta Đặt A= \(1+2+2^2+2^3+...+2^{2008}\)

Ta có 2A = \(2+2^2+2^3+...+2^{2009}\)

Lấy 2A - A = \(2+2^2+2^3+...+2^{2009}-\left(1+2+2^2+...+2^{2008}\right)\)

\(\Leftrightarrow A=2^{2009}-1\)

Ta lại có \(B=\dfrac{A}{1-2^{2009}}\)

Thay A vào B ta có \(B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)

19 tháng 11 2017

Ta có :

\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=2009\)

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

Đặt \(C=1+2+2^2+...+2^{2008}\)

\(\Leftrightarrow2C=2+2^2+...+2^{2009}\)

hay \(C=2^{2009}-1\)

\(B=\dfrac{C}{1-2^{2009}}=-1\)

17 tháng 3 2018

2, ta thấy:

\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)

\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)

từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)