Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu1:
a: \(=2008^2-\left(2008-2\right)\left(2008+2\right)\)
\(=2008^2-\left(2008^2-4\right)\)
=4
b: \(=\dfrac{23\cdot29\cdot10101}{23\cdot29\cdot10101}=1\)
c: \(=\dfrac{\left(2^{17}+5^{17}\right)\left(3^{14}-5^{12}\right)\cdot\left(16-16\right)}{15^2+5^3+67^7}\)
=0
2, ta thấy:
\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)
\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)
từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
Câu 1: Lời giải:
a, Đặt \(A=\dfrac{3x+7}{x-1}\).
Ta có: \(A=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=\dfrac{3x-3}{x-1}+\dfrac{10}{x-1}=3+\dfrac{10}{x-1}\)
Để \(A\in Z\) thì \(\dfrac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\dfrac{3x+7}{x-1}\in Z\).
Câu 3:
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\) khi x = -1
b, Ta có: \(-\left|3-x\right|\le0\)
\(\Rightarrow Q=1010-\left|3-x\right|\le1010\)
Dấu " = " khi \(\left|3-x\right|=0\Rightarrow x=3\)
Vậy \(MAX_Q=1010\) khi x = 3
c, Vì \(\left(x-3\right)^2+1\ge0\) nên để C lớn nhất thì \(\left(x-3\right)^2+1\) nhỏ nhất
Ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)
\(\Rightarrow C=\dfrac{5}{\left(x-3\right)^2+1}\le\dfrac{5}{1}=5\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy \(MAX_C=5\) khi x = 3
d, Do \(\left|x-2\right|+2\ge0\) nên để D lớn nhất thì \(\left|x-2\right|+2\) nhỏ nhất
Ta có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\)
\(\Rightarrow D=\dfrac{4}{\left|x-2\right|+2}\le\dfrac{4}{2}=2\)
Dấu " = " khi \(\left|x-2\right|=0\Rightarrow x=2\)
Vậy \(MAX_D=2\) khi x = 2
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)
<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)
<=>\(4x-17=0\)
<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)
a.\(\dfrac{-4}{5}-\left(\dfrac{2}{3}x+1\dfrac{1}{4}\right)=\dfrac{2}{7}\)
\(\left(\dfrac{2}{3}x+1\dfrac{1}{4}\right)=\dfrac{-4}{5}-\dfrac{2}{7}=\dfrac{-38}{35}\)
\(\dfrac{2}{3}x=\dfrac{-38}{35}-1\dfrac{1}{4}\)
\(\dfrac{2}{3}x=\dfrac{-327}{140}\Rightarrow x=\dfrac{-327}{140}:\dfrac{2}{3}=\dfrac{-981}{280}\)
Vậy \(x=\dfrac{-981}{280}\)
b. \(\dfrac{5}{6}+\left(\dfrac{3}{4}-\dfrac{1}{2}:x\right)=\dfrac{-2}{3}\)
\(\left(\dfrac{3}{4}-\dfrac{1}{2}:x\right)=\dfrac{-2}{3}-\dfrac{5}{6}=\dfrac{-3}{2}\)
\(\dfrac{1}{2}:x=\dfrac{3}{4}-\dfrac{-3}{2}\)
\(\dfrac{1}{2}:x=\dfrac{9}{4}\Rightarrow x=\dfrac{1}{2}:\dfrac{9}{4}=\dfrac{2}{9}\)
Vậy \(x=\dfrac{2}{9}\)
c. \(\left(\dfrac{4}{5}x-1\dfrac{1}{3}\right):\dfrac{3}{4}=0,7\)
\(\left(\dfrac{4}{5}x-1\dfrac{1}{3}\right)=0,7.\dfrac{3}{4}=\dfrac{21}{40}\)
\(\dfrac{4}{5}x=\dfrac{21}{40}+1\dfrac{1}{3}=\dfrac{223}{120}\)
\(\Rightarrow x=\dfrac{223}{120}:\dfrac{4}{5}=\dfrac{223}{96}\)
Vậy \(x=\dfrac{223}{96}\)
d. \(\dfrac{5}{6}-\dfrac{3}{4}x=1\dfrac{1}{3}+0,5x\)
\(0,5x+\dfrac{3}{4}x=\dfrac{5}{6}-1\dfrac{1}{3}\)
\(\dfrac{5}{4}x=\dfrac{-1}{2}\Rightarrow x=\dfrac{-1}{2}:\dfrac{5}{4}=\dfrac{-2}{5}\)
Vậy \(x=\dfrac{-2}{5}\)
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)