Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)
\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)
\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)
\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)
\(A=\left[35-0\right]-5\frac{7}{32}\)
\(A=35-5\frac{7}{32}\)
\(A=\frac{953}{32}\)
\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)
\(B=71\frac{38}{45}-\frac{36377}{855}\)
\(B=\frac{1670}{57}\)
\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)
\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)
\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)
\(C=\frac{153}{14}:\frac{4}{5}\)
\(C=\frac{765}{56}\)
\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)
\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)
\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)
\(D=0-\frac{1}{4}\)
\(D=-\frac{1}{4}\)
\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)
\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)
\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)
\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)
\(\)\(E=\frac{22}{45}\)
CHUC BAN HOC TOT >.<
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
\(a,2\cdot3^3-3\cdot2^2+7^2-5^2\)
\(=2\cdot27-3\cdot4+49-25\)
\(=54-12+49-25\)
\(=42+24\)
\(=66\)
a) Tổng C có số số hạng là :
( 20 - 1 ) : 1 + 1 = 20 ( số )
Ta thấy \(20⋮2\)nên khi ta nhóm 2 số lại thì sẽ không có số nào bị thừa cả
Ta có :
\(C=2009+2009^2+2009^3+......+2009^{20}\)
\(C=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+.....+\left(2009^{19}+2009^{20}\right)\)
\(C=1.\left(1+2009\right)+2009^3.\left(1+2009\right)+......+2009^{19}.\left(1+2009\right)\)
\(C=1.2010+2009^3.2010+.....+2009^{19}.2010\)
\(C=2010.\left(1+2009^3+....+2009^{19}\right)\)
Vậy \(C⋮2010\left(ĐPCM\right)\)
b) Gọi số cần tìm là : a \(\left(a\ne0;a\inℤ\right)\)
Vì a chia cho 5 dư 3 nên \(a-3⋮5\)suy ra \(a-3+5⋮5\Rightarrow a+2⋮5\)
Vì a chia cho 6 dư 4 nên \(a-4⋮6\)suy ra \(a-4+6⋮6\Rightarrow a+2⋮6\)
Vì a chia cho 7 dư 5 nên \(a-5⋮7\)suy ra \(a-5+7⋮7\Rightarrow a+2⋮7\)
Vì \(\hept{\begin{cases}a+2⋮5\\a+2⋮6\\a+2⋮7\end{cases}\Rightarrow a+2\in BC\left(5;6;7\right)}\)
Vì a phải là nhỏ nhất nên \(a+2\in BCNN\left(5;6;7\right)\)
Vì \(\left(5;6;7\right)=1\)nên \(BCNN\left(5;6;7\right)=5.6.7=210\)
\(\Rightarrow a+2=210\)
\(\Rightarrow a=210-2\)
\(\Rightarrow a=208\)
Vậy \(a=208\)
\(I=\left(1+5+...+2009\right)+\left(2+6+...+2010\right)-\left(3+7+...+2007\right)-\left(4+8+...+2008\right)\)
\(=\frac{\left(2009+1\right).\left[\left(2009-1\right):4+1\right]}{2}+\frac{\left(2010+2\right)\left[\left(2010-2\right):4+1\right]}{2}\)
\(-\frac{\left(2007+3\right).\left[\left(2007-3\right):4+1\right]}{2}+\frac{\left(2008+4\right)\left[\left(2008-4\right):4+1\right]}{2}\)
\(=\frac{2010.503}{2}+\frac{2012.503}{2}-\frac{2010.502}{2}-\frac{2012.502}{2}\)
\(=1005+1006=2011\)