K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

\(I=\left(1+5+...+2009\right)+\left(2+6+...+2010\right)-\left(3+7+...+2007\right)-\left(4+8+...+2008\right)\)

\(=\frac{\left(2009+1\right).\left[\left(2009-1\right):4+1\right]}{2}+\frac{\left(2010+2\right)\left[\left(2010-2\right):4+1\right]}{2}\)

\(-\frac{\left(2007+3\right).\left[\left(2007-3\right):4+1\right]}{2}+\frac{\left(2008+4\right)\left[\left(2008-4\right):4+1\right]}{2}\)

\(=\frac{2010.503}{2}+\frac{2012.503}{2}-\frac{2010.502}{2}-\frac{2012.502}{2}\)

\(=1005+1006=2011\)

7 tháng 3 2017

3.

\(A=1-3+3^2-3^3+...-3^{2009}-3^{2010}\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}\)

\(\Rightarrow4A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}+\left(1-3+3^2-3^3+...-3^{2009}+3^{2010}\right)\)\(\Rightarrow4A=3^{2011}-1\)

\(\Rightarrow4A=3^{2011}\)

\(\Rightarrow\)ĐPCM

7 tháng 3 2017

mik đg cần gấp câu 1 và câu 2 câu 3 mik lm đk r mơn bn nhé nhưng bn có thể giúp mik câu 1 và câu 2 k?khocroi

3 tháng 12 2019

a/A=-17.5

b/B=0

9 tháng 5 2018

a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)

=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)

=2.5

=10

23 tháng 2 2017

a) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\) 

\(=\frac{2^{10}.\left(13.4+65.4\right)}{2^{10}.104}+\frac{3^9.\left(3.11+3.5\right)}{3^9.16}\)

\(=\frac{312}{104}+\frac{48}{16}\)

=3+3=6

b) \(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

\(=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)

\(=\frac{1.5.6}{1.3.5}\)

\(=2\)

c) 1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013

Nhận xét:Giá trị tuyệt đối của hai số liền nhau hơn kém nhau 1 đơn vị

=> Tổng trên có 2013-1+1=2013(Số hạng)

Nhóm 4 số vào một nhóm, ta được 2013:4=503 nhóm (thừa 1 số)

=>1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013

=1+(2-3-4+5)+(6-7-8+9)+...+(2010-2011-2012+2013)

=1+0+0+...+0 (có 503 số 0)

=1+0.503

=1+0

=1 

30 tháng 4 2017

Bài 1:

a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)

\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)

\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)

\(x=\dfrac{7}{20}:\dfrac{2}{5}\)

\(x=\dfrac{7}{8}\)

Vậy \(x=\dfrac{7}{8}\).

b) \(\dfrac{3}{5}=\dfrac{24}{x}\)

\(x=\dfrac{5\cdot24}{3}\)

\(x=40\)

Vậy \(x=40\).

c) \(\left(2x-3\right)^2=16\)

\(\left(2x-3\right)^2=4^2\)

\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)

\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)

Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).

Bài 2:

a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)

\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)

\(=\dfrac{5-88+5}{20}\)

\(=\dfrac{78}{20}=\dfrac{39}{10}\)

b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\)

Bài 3:

a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)

\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)

\(=\dfrac{-3}{7}\cdot1\)

\(=\dfrac{-3}{7}\)

b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)

\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)

\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)

\(=4-\dfrac{11}{4}\)

\(=\dfrac{16}{4}-\dfrac{11}{4}\)

\(\dfrac{5}{4}\)

Bài 4:

\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)

\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)

\(=2\cdot\dfrac{1}{15}\)

\(=\dfrac{2}{15}\)

27 tháng 1 2019

\(a,2011+2010\left(-4.5^2+11.3^2\right)^{2009}\)

\(=2011+2010\left(-1\right)=2011-2010\)

\(=1\)