Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}=\dfrac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\dfrac{2^{29}.3^{18}}{2^{28}.3^{18}}=\dfrac{2^{29}}{2^{28}}=2^1=2\)
Sửa đề:\(\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-3^{20}\cdot2^{29}}{5\cdot2^9\cdot3^{19}\cdot2^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{3^{18}\cdot2^{29}\cdot\left(5\cdot2-9\right)}{2^{28}\cdot3^{18}\cdot\left(5\cdot3-7\cdot2\right)}=2\)
\(A=\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{7.2^{29}.27^6-5.2^9.6^{19}}\)
\(A=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{7.2^{29}.3^{18}-5.2^9.2^{19}.3^{19}}\)
\(A=\dfrac{2^{29}.3^{18}.\left(5.2-3^2\right)}{2^{28}.3^{18}.\left(7.2-5.3\right)}\)
\(A=\dfrac{2.\left(10-9\right)}{14-15}=\dfrac{2}{-1}=-2\)
Chúc bạn học tốt!!!
\(A=\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{7.2^{29}.27^6-5.2^9.6^{19}}=\dfrac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^2\right)^9}{7.2^{29}.27^6-5.2^9.\left(2.3\right)^{19}}\)
\(=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{7.2^{29}.3^{18}-5.2^9.2^{19}.3^{19}}\)
\(=\dfrac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(7.2-5.3\right)}\)
\(=\dfrac{2\left(10-9\right)}{14-15}=\dfrac{2}{-1}=-2\)
\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)\(=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\frac{2.1}{1}=2\)
học tốt ~~~
\(\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\\ =2\)
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\dfrac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^2.\left(3.2\right)^{19}-7.2^{29}.\left(3^3\right)^6}\)
\(=\dfrac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^2.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{2^{29}.3^{18}.\left(5.2-3\right)}{2^{28}.3^{18}.\left(5.1.3-7.2.1\right)}\)
\(=\dfrac{2^{29}.3^{18}.1}{2^{28}.3^{18}.1}\)
\(=\dfrac{2^{29}}{2^{28}}\)
\(=2\)
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\) (sửa \(-9^9\rightarrow.9^9\))
\(=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{2^{29}.3^{18}\left(15-9\right)}{2^{28}.3^{18}\left(15-14\right)}\)
\(=2.6=12\)
Ta có : \(\frac{5.4^{15}.9^9+4.3^{20}.\left(-8\right)^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^9.\left(2.3\right)^{19}-7.2^{29}.\left(3^3\right)^6}=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\frac{2^{29}.3^{18}}{2^{28}.3^{18}}=2\)
Lời giải:
\(\frac{5.(2^2)^{15}.(3^2)^9-2^2.3^{20}.(2^3)^9}{5.2^9.2^{19}.3^{19}-7.2^{29}.(3^3)^6}\\ =\frac{5.2^{30}.3^{18}-3^{20}.2^{29}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\\ =\frac{2^{29}.3^{18}(2.5-3^2)}{2^{28}.3^{18}(5.3-7.2)}=\frac{2^{29}.3^{18}}{2^{28}.3^{18}}=2\)
\(A=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^9.\left(2.3\right)^{19}-7.2^{29}.\left(3^3\right)^6}\)
\(=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}=\frac{5.2.2^{29}.3^{18}-2^{29}.3^2.3^{18}}{5.2^{28}.3.3^{18}-7.2.2^{28}.3^{18}}=\frac{\left(5.2-3^2\right).2^{29}.3^{18}}{\left(5.3-7.2\right).2^{28}.3^{18}}\)
\(=2\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{29}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3-7\right)}=\dfrac{10-9}{15-7}=\dfrac{1}{8}\)