Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(40^2-39^2+38^2-37^2+....+32^2-31^2\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(32-31\right)\left(32+31\right)\)
\(=40+39+38+37+....+32+31\)
Số số hạng của dãy trên là: (40-31):1+1= 10 (số)
Tổng trên là: (40+31) x 10 : 2 = 355
Vậy ....
\(=\left(40^2-31^2\right)-\left(39^2-32^2\right)+\left(38^2-33^2\right)-\left(37^2-34^2\right)+\left(36^2-35^2\right)\)
\(=\left(40-31\right)\left(40+31\right)-\left(39-32\right)\left(39+32\right)+\left(38-33\right)\left(38+33\right)-\)
\(\left(37-34\right)\left(37+34\right)+\left(36-35\right)\left(36+35\right)\)
\(=9.71-7.71+5.71-3.71+1.71\)
\(=\left(9-7+5-3+1\right).71=5.71=355\)
Đề: Tính???
20122 - 20112 + 20102 - 20092 + ... + 22 - 12
= (2012 + 2011) (2012 - 2011) + (2010 + 2009) (2010 - 2009) + ... + (2 + 1) (2 - 1)
= 2012 + 2011 + 2010 + 2009 + ... + 2 + 1
Số số hạng là: (2012 - 1) : 1 + 1 = 2012 (số)
Tổng bằng: (1 + 2012) . 2012 : 2 = 2025078
Vậy 20122 - 20112 + 20102 - 20092 + ... + 22 - 12 = 2025078.
132^2 - 112^2 = (132 - 112) (132 + 112) = 20 . 244 = 4880
39 . 41 = (40 - 1) (40 + 1) = 402 - 1 = 1599
402 - 392 + 382 - 372 + ... + 22 - 1 = (402 - 392) + (382 - 372) + ... + (22 - 1)
= (40 - 39) (40 + 39) + (38 - 37) (38 + 37) + ... + (2 - 1) (2 + 1)
= 40 + 39 + 38 + 37 + 36 + ... + 2 + 1
= \(\frac{\left(40-1+1\right)\left(40+1\right)}{2}=\frac{40.41}{2}=820\)
2A = 2^2013-2^2012-2^2011-.....-2
A = 2A-A = (2^2013-2^2012-.....-2)-(2^2012-2^2011-....-1) = 2^2013-2.2^2012+1 = 2^2013 - 2^2013 +1 = 1
=> 2012^A = 2012^1 = 2012
k mk nha
\(40^2-39^2+38^2-37 ^2+...+2^2-1^2\)
= \(\left(40+39\right)\left(40-39\right)+\left(38+37\right)\left(38-37\right)+....+\left(2+1\right)\left(2-1\right)\)
= \(79.1+75.1+....+3.1\)
= \(79+75+....+3\)
= \(\left(79+3\right)\left[\left(79-3\right):4+1\right]:2\)
= \(82.20:2\)
= \(820\)
\(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
=> \(9x^2-6x+1+2x^2+12x+18-11x^2+11=6\)
=> \(6x+30=6\)
=> \(6x=6-30\)
=> \(6x=-24\)
=> \(x=-24:6=-4\)
\(\text{a) }40^2-39^2+38^2-37^2+...+2^2-1^2\)
\(=\left(40^2-39^2\right)+\left(38^2-37^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(40-39\right)\left(40+39\right)+\left(38-37\right)\left(38+37\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1.79+1.75+...+1.3\)
\(=79+75+...+3\)
\(\text{Từ 3 đến 79 có: (79 - 3) : 2 + 1 = 39 (số hạng)}\)
\(\text{Tổng là: }\frac{\left(79+3\right)\times39}{2}=1599\)
\(\text{b) }\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow\left(9x^2-6x+1\right)+2\left(x^2+6x+9\right)+11\left(1-x^2\right)=6\)
\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)
\(\Leftrightarrow\left(9x^2+2x^2-11x^2\right)+\left(-6x+12x\right)+\left(1+18+11\right)=6\)
\(\Leftrightarrow6x+30=6\)
\(\Leftrightarrow6x=6-30\)
\(\Leftrightarrow6x=-24\)
\(\Leftrightarrow x=-4\)
a)
PT <=> \(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
<=> \(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
<=> \(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\)
Mà \(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\ne0\)
<=> x - 2013 = 0
<=> x = 2013
KL: ...
b) PT <=> \(\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)
<=> \(x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)
<=> \(\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)
<=> \(\left(x-5\right)\left[\left(x^3+6x^2\right)-\left(x^2+6x\right)+\left(x+6\right)\right]=0\)
<=> \(\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)
<=> \(\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)
<=> \(\left[{}\begin{matrix}x=5\\x=-6\\x=\varnothing\end{matrix}\right.\)
KL: ...
a) Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}-2012=0\)
\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1=0\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\right)=0\)
mà \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1>0\)
nên x-2013=0
hay x=2013
Vậy: Tập nghiệm S={2013}
b) Ta có: \(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)
\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+6x-5x-30\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)(1)
Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\)(2)
Từ (1) và (2) suy ra (x+6)(x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=5\end{matrix}\right.\)
Vậy: Tập nghiệm S={-6;5}
tìm 2 số lẻ liên tiếp biết hiệu b của phương của chúng bằng 56
hsdllhvbweiuuuuuuuuuuuuuuuuuuuuuuuuuu