Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=2009\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^{2005}}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2A=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)\)
\(2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2004}}\)
\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2004}}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2005}}\right)\)
\(A=2-\dfrac{1}{2^{2005}}\)
Giải:
Ta có: A = \(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^{2005}}.\)
= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...=\dfrac{1}{2^{2005}}.\)
2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right).\)
= \(1+2+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2004}}.\)
2A -A = \(\left(1+2+\dfrac{1}{2}+...+\dfrac{1}{2^{2004}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right).\)
= 2 - \(\dfrac{1}{2^{2005}}.\)
Vậy \(A=2-\dfrac{1}{2^{2005}}.\)
CHÚC BN HỌC TỐT!!! ^-^
Đừng quên bình luận nếu bài mik sai nhé!!!
Ta có :
\(Y=\dfrac{1}{3^0}+\dfrac{1}{3^1}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{2005}}\)
\(\Rightarrow3Y=2+\dfrac{1}{3^0}+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...........+\dfrac{1}{3^{2004}}\)
\(\Rightarrow3Y-Y=\left(2+\dfrac{1}{3^0}+\dfrac{1}{3^1}+.............+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3^0}+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...........+\dfrac{1}{3^{2005}}\right)\)\(\Rightarrow2Y=2-\dfrac{1}{3^{2005}}\)
\(\Rightarrow Y=\dfrac{2-\dfrac{1}{3^{2005}}}{2}\)
\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)
\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)
Chị sử dụng cách làm lớp 7 ở câu 3 nha em
em cũng tự quy đồng và suy ra cách làm của cô giáo dạy em nha
chữ cj xấu thì mong em thông cảm
Đặt: \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2004}}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2004}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)\)
\(A=1-\dfrac{1}{2^{2005}}\)