K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^{2005}}\)

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2A=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)\)

\(2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2004}}\)

\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2004}}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2005}}\right)\)

\(A=2-\dfrac{1}{2^{2005}}\)

29 tháng 3 2017

Giải:

Ta có: A = \(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^{2005}}.\)

= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...=\dfrac{1}{2^{2005}}.\)

2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right).\)

= \(1+2+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2004}}.\)

2A -A = \(\left(1+2+\dfrac{1}{2}+...+\dfrac{1}{2^{2004}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right).\)

= 2 - \(\dfrac{1}{2^{2005}}.\)

Vậy \(A=2-\dfrac{1}{2^{2005}}.\)

CHÚC BN HỌC TỐT!!! ^-^

Đừng quên bình luận nếu bài mik sai nhé!!!vuivuivui

31 tháng 3 2017

b) \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)

\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)

\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)

31 tháng 3 2017

mik lỡ bấm nhầm rồi, phần sau bn tự nghĩ nhé, sorry

\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)

\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)

11 tháng 2 2023

A= 1/3 + 1/3^2 + ... + 1/3^8

3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)

3A=1+ 1/3 + 1/3^2+ ... +1/3^7

=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)

=> 2A= 1 - 1/ 3^8

2A= 6560/6561

A= 6560/6561 : 2

A= 3280/6561

11 tháng 2 2023

nè bạn

 

19 tháng 11 2017

Ta có :

\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=2009\)

16 tháng 3 2017

\(A=-B\)

\(B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{23.25}+\dfrac{2}{25.27}+\dfrac{1}{27}\)

\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{23}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}\)

\(B=1\)

A=-1

16 tháng 3 2017

\(A=-\dfrac{2}{1.3}-\dfrac{2}{3.5}-......-\dfrac{2}{25.27}-\dfrac{1}{27}\)

\(\Leftrightarrow A=-\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+.....+\dfrac{1}{27}\right)\)

\(\Leftrightarrow A=-\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}\right)\)

\(\Leftrightarrow A=-1\)

22 tháng 9 2019

rút gọn đi