K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2023

1 +  1/3 + 1/9 + 1/27 + 1/81

= 1 + (1/3 + 1/27) + (1/9 + 1/81)

= 1 + (9/27 + 1/27) + (9/81 + 1/81)

= 1 + 10/27 + 10/81

= 1 + 30/81 + 10/81

= 1 + 40/81

= 121/81

7 tháng 9 2023

ảm ơn bạn nhìu !!!!

13 tháng 1 2024

a; (5142 - 17 x 8 + 242 : 11) x (27 -  3 x 9)

   = (5142 -  17 x 8 + 242 : 11) x (27 - 27)

 =  (5142 - 17 x 8 + 242 : 11) x 0

   = 0

 

13 tháng 1 2024

b; 

  (1 + \(\dfrac{1}{2}\)\(\times\) (1 + \(\dfrac{1}{3}\)\(\times\) ( 1 + \(\dfrac{1}{4}\)\(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)\(\times\)(1 + \(\dfrac{1}{2011}\))

\(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)

\(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)

\(\dfrac{2012}{2}\)

= 1006

13 tháng 5 2017

\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)

=\(\frac{3}{1.2}+\frac{3}{2.4}+\frac{3}{4.8}+\frac{3}{8.16}+\frac{3}{16.32}\)

=\(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{4}+\frac{3}{4}-\frac{3}{8}+\frac{3}{8}-\frac{3}{16}+\frac{3}{16}-\frac{3}{36}\)

=\(\frac{3}{1}-\frac{3}{36}\)=\(\frac{35}{12}\)

28 tháng 6 2017

a)=768/512+192/512+48/512+12/512+3/512

=768+192+48+12+3/512

=1023/512 

b)=405/81+135/81+45/81+15/81+5/81

=405+135+45+15+5/81

=595/81

c)=256/192+64/192+16/192+4/192+1/192

=256+64+16+4+1/192

=341/192

HQ
Hà Quang Minh
Giáo viên
28 tháng 1 2024

Ta có công thức tổng quát: 

\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)

\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)

Theo đề bài ta có: 

\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)

28 tháng 1 2024

khó nhỉ

14 tháng 12 2021

Các bạn giải giúp mik với ạ nhanh lên mik sắp pải nộp cho cô rùi 

13 tháng 5 2023

=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007

=2008/12

=502/3

13 tháng 5 2023

A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)

A = ( 1 + \(\dfrac{1}{12}\)\(\times\) ( 1 + \(\dfrac{1}{13}\)\(\times\) ( 1 + \(\dfrac{1}{14}\)\(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))

A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)

A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)

A = 1 \(\times\) \(\dfrac{502}{3}\)

A = \(\dfrac{502}{3}\)

22 tháng 6 2021

/3/5<1   2/2=1     9/4>1   1>7/8

 
8 tháng 8 2021

<                 

=

>

>

19 tháng 4 2018

a) Cho:  \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

\(\Rightarrow3A-A=3-\frac{1}{81}\)

\(\Rightarrow A=\frac{3-\frac{1}{81}}{2}\)

\(A=\frac{121}{81}\)

b) \(37,52+4,7\times2,3-9,8\)

\(=37,52+10,81-9,8\)

\(=38,53\)

Chúc bn học tốt !!!!!

30 tháng 1 2024

a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)

   A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)

   A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)

   A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)

  A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)

 A = 2