Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chủ câu hỏi còn sống kh ặk=))?Eoo ôi bài khó tkế,tuii kh bíc làmm đôuu nòoo,còn sống thỳy nkắnn tin vớii tuii cko vuii nèeee<333
Lời giải:
Tìm đạo hàm theo biến $y$, bạn chỉ cần coi $x$ là một tham số rồi sử dụng công thức như bình thường thôi.
\(f(y)=y.e^{xy}.\sin y\)
\(\Rightarrow f'(y)=(y.e^{xy})'\sin y+y.e^{xy}(\sin y)'\)
\(=[y'.e^{xy}+y(e^{xy})']\sin y+y.e^{xy}.\cos y\)
\(=(e^{xy}+yxe^{xy})\sin y+y.e^{xy}\cos y\)
----------------------------------
Tính đạo hàm cấp 2.
Theo biến $x$
\(f(x)=e^{xy}\sin y\)
\(\Rightarrow f'(x)=\sin y(e^{xy})'=\sin y.ye^{xy}\)
\(\Rightarrow f''(x)=(y\sin y.e^{xy})'=y\sin y(e^{xy})'=y^2\sin y.e^{xy}\)
Theo biến $y$
\(f(y)=e^{xy}.\sin y\)
\(\Rightarrow f'(y)=(e^{xy})'\sin y+(\sin y)'e^{xy}\)
\(=x.e^{xy}\sin y+\cos y.e^{xy}\)
\(\Rightarrow f''(y)=(xe^{xy}.\sin y+\cos y.e^{xy})'\)
\(=(x.e^{xy}\sin y)'+(\cos y.e^{xy})'\)
\(=(x.e^{xy})'\sin y+(\sin y)'.xe^{xy}+(\cos y)'e^{xy}+\cos y(e^{xy})'\)
\(=x^2e^{xy}.\sin y+\cos y.x.e^{xy}-\sin y.e^{xy}+x\cos y.e^{xy}\)
\(P=3x^2-y^2+4xy=3x^2-y^2+4xy+x^2+y^2=4x^2+4xy\)
\(\Rightarrow\frac{P}{4}=\frac{4x^2+4xy}{x^2+y^2}\)
- Với \(y=0\Rightarrow P=16\)
- Với \(y\ne0\Rightarrow\frac{P}{4}=\frac{4\left(\frac{x}{y}\right)^2+\frac{4x}{y}}{\left(\frac{x}{y}\right)^2+1}\)
Đặt \(t=\frac{x}{y}\Rightarrow\frac{P}{4}=\frac{4t^2+4t}{t^2+1}\Leftrightarrow P.t^2+P=16t^2+16t\)
\(\Leftrightarrow\left(P-16\right)t^2-16t+P=0\)
\(\Delta'=64-P\left(P-16\right)\ge0\)
\(\Leftrightarrow-P^2+16P+64\ge0\)
\(\Leftrightarrow8-8\sqrt{2}\le P\le8+8\sqrt{2}\)
\(\Rightarrow P_{max}=8+8\sqrt{2}\) khi \(t=\sqrt{2}+1\) hay \(x=\left(\sqrt{2}+1\right)y\)
1.
Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)
\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)
2.
a.
\(y=cos^22x+3cos2x+3\)
\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)
\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)
b.
Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le a\le5\)
\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)
\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)
\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)