K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

banhhahaheheoebanhquabucminhbucquaeoeohagianroihehe

5 tháng 6 2016

y'= \(3x^2\)-2

NV
9 tháng 6 2020

a/ \(y'=2\left(2x^3-1\right).\left(2x^3-1\right)'=12x^2\left(2x^3-1\right)\)

b/ \(y'=2\left(1-x\right)\left(1-x\right)'=2\left(x-1\right)\)

c/ \(y'=\left(8x+1\right)\left(2x-3\right)+2\left(4x^2+x+1\right)\)

NV
9 tháng 6 2020

a/ \(y=\left(2x+1\right)\left(x-2\right)\left(3-x\right)=-2x^3+9x^2-7x-6\)

\(\Rightarrow y'=-6x^2+18x-7\)

b/ \(y=\left(2x^2+1\right)\left(x^2+x+2\right)x=\left(2x^2+1\right)\left(x^3+x^2+2x\right)\)

\(y'=4x\left(x^3+x^2+2x\right)+\left(2x^2+1\right)\left(3x^2+2x+2\right)\)

NV
4 tháng 6 2020

a/ \(y'=4\left(2x-3\right)^3.\left(2x-3\right)'=8\left(2x-3\right)^3\)

b/ \(y'=5cos^43x.\left(cos3x\right)'=-15cos^43x.sin3x\)

c/ \(y'=\frac{\left[cos\left(1-2x^2\right)\right]'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{-sin\left(1-2x^2\right).\left(1-2x^2\right)'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{2x.sin\left(1-2x^2\right)}{\sqrt{cos\left(1-2x^2\right)}}\)

d/ \(y'=\frac{\left(\frac{x+1}{x-1}\right)'}{2\sqrt{\frac{x+1}{x-1}}}=\frac{\frac{-2}{\left(x-1\right)^2}}{2\sqrt{\frac{x+1}{x-1}}}=-\frac{1}{\left(x-1\right)^2\sqrt{\frac{x+1}{x-1}}}\)

e/ \(y'=4\left(1+sin^2x\right)^3\left(1+sin^2x\right)'=8.sinx.cosx\left(1+sin^2x\right)^3=4sin2x.\left(1+sin^2x\right)^3\)

NV
6 tháng 5 2019

\(y'=2019\left(x^2+x+1\right)^{2018}.\left(x^2+x+1\right)'=2019\left(x^2+x+1\right)^{2018}\left(2x+1\right)\)

\(y'=x'.sinx+x.\left(sinx\right)'=sinx+x.cosx\)