Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: UCLN(23578;43210)=2
BCNN(23578;43210)=509402690
b: UCLN(123456;65432)=8
BCNN(123456;65432)=1009746624
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
p(x)=x2+5x4-3x3+x2+4x4+3x3-x+5
p(x)=9x4+2x2-x+5
=> p(-1)=9.(-1)4+2(-1)2-(-1)+5=9+2+1+5=17
ta có;
q(x)=x-5x3-x2-x4+4x3-x2+3x-1
q(x)=-x4-x3-2x2+3x-1
=> q(-1)=-(-1)4-(-1)3-2(-1)2+3(-1)-1
q(-1)=-1+1-2+3-1=0
=> -1 là nghiệm của q(x) chứ không phải là nghiệm của p(x)
=> bạn kt lại đề nha
Ta có:
A =2100-299+298-297+.....+22-21
=>2A=2101-2100+299-298+.....+23-22
=>2A+A=(2101-2100+299-298+.....+23-22) + (2100-299+298-297+....+22-21)
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Vậy A=\(\frac{2^{101}-2}{3}\).
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)
\(\Rightarrow3A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
!)
=> x(x - 1)=0
=> \(\left[\begin{array}{nghiempt}x=1\\x-1=0\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy đa thức có nghiệm là x=0 ; x=1
1) \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c)\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)
d)\(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x-4=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{4}{3}\end{array}\right.\)
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)=\(\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{2^{10}\cdot3^8-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{6}{10}=\dfrac{3}{5}\)
Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)
\(\Rightarrow A=1+2+2^2+...+2^{40}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{41}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{41}\right)-\left(1+2+2^2+...+2^{40}\right)\)
\(\Rightarrow A=2^{41}-1\)
Vì \(2^{41}-1< 2^{41}\) nên A < B
Vậy A < B
a)Ta có: công thức sau:
\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)
Ta sẽ chứng minh nó bằng quy nạp
Với n=1 ta có VT=12=1, VP=\(\frac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}=1\)=> (1) đúng với n=1
Giả sử đúng với n=k, ta sẽ chứng minh với k+1
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
Ta lại có: \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Vậy theo nguyên lí quy nạp ta có Đpcm
Đặt A=12 + 22 +...+ 502.Áp dụng vào tính tổng A ta đc:
\(A=\frac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}=42925\)
thank