K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

a)Ta có: công thức sau:

\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Ta sẽ chứng minh nó bằng quy nạp

Với n=1 ta có VT=12=1, VP=\(\frac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}=1\)=> (1) đúng với n=1

Giả sử đúng với n=k, ta sẽ chứng minh với k+1

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

Ta lại có: \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Vậy theo nguyên lí quy nạp ta có Đpcm

Đặt A=12 + 22 +...+ 502.Áp dụng vào tính tổng A ta đc:

\(A=\frac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}=42925\)

 

18 tháng 8 2016

thankyeu

Bài 1: 

a: UCLN(23578;43210)=2

BCNN(23578;43210)=509402690

b: UCLN(123456;65432)=8

BCNN(123456;65432)=1009746624

6 tháng 5 2017

mk ko chép đề mà tách luôn nha

M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2

= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2

= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2

= ( x2 + y2 ) (x2 + x2 + y2 ) + y2

= 1( x2 + 1) + y2

= x2 + y2 +1 = 2

6 tháng 5 2017

thanks bn

12 tháng 8 2016

p(x)=x2+5x4-3x3+x2+4x4+3x3-x+5

p(x)=9x4+2x2-x+5

=> p(-1)=9.(-1)4+2(-1)2-(-1)+5=9+2+1+5=17

ta có;

q(x)=x-5x3-x2-x4+4x3-x2+3x-1

q(x)=-x4-x3-2x2+3x-1

=> q(-1)=-(-1)4-(-1)3-2(-1)2+3(-1)-1

q(-1)=-1+1-2+3-1=0

=> -1 là nghiệm của q(x) chứ không phải là nghiệm của p(x)

=> bạn kt lại đề nhahihi

12 tháng 8 2016

dùng pp nhẩm nghiệm hoặc máy tính thử coi 

2 tháng 11 2016

Ta có:

A =2100-299+298-297+.....+22-21

=>2A=2101-2100+299-298+.....+23-22

=>2A+A=(2101-2100+299-298+.....+23-22) + (2100-299+298-297+....+22-21)

=>3A=2101-2

=>A=\(\frac{2^{101}-2}{3}\)

Vậy A=\(\frac{2^{101}-2}{3}\).

 

2 tháng 11 2016

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)

\(\Rightarrow3A=2^{101}-2\)

\(\Rightarrow A=\frac{2^{101}-2}{3}\)

23 tháng 12 2016

A = 20+21+22+23+...+240

-> 2A = 21+22+23+...+240+241

=> A = 2A - A = 241-1

mà B = 241

=> A < B (241-1 < 241)

23 tháng 12 2016

Trần Nguyễn Anh Thư, 2A để rút gọn biểu thức A đấy :))

1 tháng 10 2016

LÀM THEO KIỂU CƠ BẢN LÀ TÍNH XONG RÙI RÚT GỌN HOẶC XEM TRONG ĐỀ PHÉP TÍNH NÀO RÚT ĐC THÌ RÚT ^^

31 tháng 7 2016

!)

=> x(x - 1)=0

=> \(\left[\begin{array}{nghiempt}x=1\\x-1=0\end{array}\right.\)

=>\(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)

Vậy đa thức có nghiệm là x=0 ; x=1

31 tháng 7 2016

1) \(x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)

b) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)

c)\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)

d)\(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x-4=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{4}{3}\end{array}\right.\)

2 tháng 10 2017

\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)=\(\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{2^{10}\cdot3^8-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot2\cdot10}=\dfrac{6}{10}=\dfrac{3}{5}\)

23 tháng 12 2016

Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)

\(\Rightarrow A=1+2+2^2+...+2^{40}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{41}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{41}\right)-\left(1+2+2^2+...+2^{40}\right)\)

\(\Rightarrow A=2^{41}-1\)

\(2^{41}-1< 2^{41}\) nên A < B

Vậy A < B