Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)
\(S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
Đặt \(N=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
\(\Rightarrow2N-N=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
\(\Rightarrow N=2-\frac{1}{2^9}\)
Khi đó \(S=3.N=3.\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}=\frac{3069}{512}\)
\(2S=\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(2S=6+3+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(2S=\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(2S=6+3+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^3}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=6-\frac{3}{512}\)
\(S=5\frac{509}{512}\)
S = \(3\times\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
2S = \(3\times\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
2S - S = \(3\times\left[\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\right]\)
S = \(3\times\left(2-\frac{1}{2^9}\right)\)
S = \(3\times\frac{1023}{512}=\frac{3069}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=3.\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)\)
\(=3\left(2-\frac{1}{2^9}\right)=3.\frac{2^{10}-1}{2^9}=\frac{3\left(2^{10}-1\right)}{2^9}\)
ket qua= 3069/512