Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
\(A=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+.....+\left(-3\right)^{2004}\)
\(-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2005}\)
\(-3A-A=\left(-3^{2005}-\left(-3^0\right)\right)\)
\(A=\frac{\left(-3^{2005}-\left(-3^0\right)\right)}{-4}\)
S=1-3+32-33+...+32014-32015
=>3S=3-32+...+32015-32016
=>3S+S=4S=(3-32+...+32015-32016)+(1-3+...+32014-32015)
=>4S=-32016+1
=>S=\(-\frac{3^{2016}-1}{4}\)
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+........+\left(-3\right)^{2015}\)
\(\Rightarrow-3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+\left(-3\right)^4+......+\left(-3\right)^{2016}\)
\(\Rightarrow-4S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]-\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)
\(\Rightarrow-4S=\left(-3\right)^{2016}-\left(-3\right)^0\Rightarrow-4S=3^{2016}-1\Rightarrow S=\frac{3^{2016}-1}{-4}\)
B1: S = 12.1002 + 22.1002 + 32.1002 + ...+ 102.1002 = 1002.(12 + 22 + ...+ 102) = 3 850 000
Ta có :
\(S=\left(-3\right)^0+\left(-3\right)+\left(-3\right)^2+..................+\left(-3\right)^{2015}\)
\(\Rightarrow\left(-3\right).S=\left(-3\right)+\left(-3\right)^2+\left(-3\right)^3+..............+\left(-3\right)^{2015}+\left(-3\right)^{2016}\)
\(\Rightarrow\left(-3\right).S-S=\left[\left(-3\right)+\left(-3\right)^2+..............+\left(-3^{2015}\right)+\left(-3\right)^{2016}\right]-\left[\left(-3\right)^0+\left(-3\right)+...........+\left(-3\right)^{2015}\right]\)\(\Rightarrow\left(-4\right)S=\left(-3\right)^{2016}-\left(-3\right)^0\)
\(\Rightarrow\left(-4\right).S=\left(-3\right)^{2016}-1\)
\(\Rightarrow S=\dfrac{\left(-3\right)^{2016}-1}{-4}\)
\(\Rightarrow S=\dfrac{3^{2016}-1}{-4}\)