K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

S = 1 * 2 + 2 * 3 + 3 + ... + 99 * 100

3S = 1 * 2 * 3 + 2 * 3 * 4 * ( 4 - 1 ) + ... + 99  * 100 * ( 101 - 98 ) 

3S = 1 * 2 * 3 + 2* 3 * 4 - 1 * 2 * 3 + ... + 99 * 100 * 101 - 98 * 99 * 100

3S = 99 * 100 * 101 = 999900

S = 999900 : 3 = 333300, nhớ duyệt nha

15 tháng 12 2017

Cấu a:G/s các số hạng đề là dương

số số hạng của dãy là :(100-1):1+1=100 số

ta thấy 2 số liền kề nhau có tổng =1

==> có 100:2=50 cặp 

==> tổng là 1x50=50

câu 2 bạn lầm giống câu 1

6 tháng 1 2016

S = 1 x 2 + 2 x 3 + ... + 99 x 100

3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)

3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100

3S = 99 x 100 x 101 = 999900

S = 999900 : 3 = 333300

6 tháng 1 2016

3S=1*2*3+2*3*(4-1)+3*4*(5-2)+.......+99*100*(101-98)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+..........+99*100*101-98*99*100

S=99*100*11:3

S=333300

7 tháng 1 2016

Số số hạng :

(100-1):1+1=100(số hạng)

Tổng bằng:

(100+1)x(100:2)=5050

Bài này đâu phải tổng đâu bạn 

18 tháng 3 2017

\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3S=1.2.3.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3S=99.100.101\)

\(S=\frac{99.100.101}{3}\)

\(S=33.100.101\)

18 tháng 3 2017

S = 1*2+2*3+3*4+...+99*100

3S=1*2(3-0)+2*3(4-1)+3*4(5-2)+...+99*100(101-98)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+99*100*101-98*99*100

3S=99*100*101

S=(99*100*101):3

S=333 300

18 tháng 4 2016

HỌC GIỎI NGHĨA LÀ KHÔNG HỌC GIỎI => HỌC GIỐT

30 tháng 12 2015

a) 1-2+3-4+...99-100

=(1-2)+(3-4)+....+(99-100)

=(-1)+(-1)+......+(-1)

vì từ 1 ->100 nên có 50 cặp

=>có 50 số -1

=>=(-1)+(-1)+......+(-1)=-50

=>1-2+3-4+...99-100=-50

đợi xíu nhé giải b cho

 

 

30 tháng 12 2015

a)S=(-1)+(-1)+...+(-1)

Có:

(99-1):2+1=50(số)

-1x50=-50

câu b tương tự

DD
31 tháng 8 2021

\(S=1\times2+2\times3+3\times4+...+99\times100\)

\(3\times S=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+99\times100\times\left(101-98\right)\)

\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+99\times100\times101-98\times99\times100\)

\(=99\times100\times101\)

\(S=\frac{99\times100\times101}{3}\)