K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

B = \(\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{97.99}=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

   =\(3.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=3.\left(1-\frac{1}{99}\right)=3.\frac{98}{99}=\frac{98}{33}\)

5 tháng 8 2016

\(B=\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{97.99}\)

\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

\(=3\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=3\left(1-\frac{1}{99}\right)\)

\(=\frac{98}{33}\)

6 tháng 8 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{97.99}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

 \(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

6 tháng 8 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

\(\Leftrightarrow A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

\(\Leftrightarrow A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

2 tháng 1 2018

Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)

\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)

\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)

\(=97\times99\times101+3\)

\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)

24 tháng 9 2019

6B=1x3x6+3x5x6+5x7x6+.....+97x99x6

6B=1x3x(5+1)+3x5x(7-1)+....+97x99x(102-95)

6B=1x3x5+1x3+3x5x7-3x5+....+97x99x101-95x97x99

6B=1x3x97x99x101

6B=969906

=>B=161651

16 tháng 10 2015

B=1x3+3x5+5x7+7x9+...+95x97+97x99

= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)

= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2

= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)

= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)

Đặt : A = 12+32 +52+...+952+ 97

C =1+3 +5+...+95+97  

    tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B 

1 tháng 5 2015

b)

S2=6/2x5+6/5x8+6/8x11+...+6/29x32

=2.(3/2.5+3/5.8+...+3/29.32)

=2.(1/2-1/5+1/5-1/8+...+1/29-1/32)

=2.(1/2-1/32)

=2.15/32

=15/16

1 tháng 5 2015

a)

Ta có:

S1=2/3x5+2/5x7+2/7x9+...+2/97x99

=1/3-1/5+1/5-1/7+...+1/97-1/99

=1/3-1/99

=32/99

1 tháng 4 2019

\(E=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(\Rightarrow E=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\) (đặt  2  làm nhân tử chung để ta có các số hạng trong ngoặc có hiệu 2 số ở mẫu = tử)

\(\Rightarrow E=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow E=2.\left(1-\frac{1}{99}\right)\)

\(\Rightarrow E=2.\frac{98}{99}\)

\(\Rightarrow E=\frac{196}{99}\)

*Không biết có đúng ko :)

1 tháng 4 2019

k roy nha