Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow6P=2.4.6+4.6.6+...+98.100.6\)
\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)
\(=2.4.6+4.6.8-2.4.6+...+98.100.102-96.98.100\)
\(=98.100.102\)
\(\Rightarrow P=\frac{98.100.102}{2}=499800\)
Nhầm phải là \(\frac{98.100.102}{6}=166600\)
xin lỗi ghi nhầm
Ta thấy:
1 x 4 = 1 x 2 + 1 x 2
2 x 5 = 2 x 3 + 2 x 2
3 x 6 = 3 x 4 + 3 x 2
.................................
Suy ra:
D = (1 x 2 + 2 x 3 + 3 x 4 + .... + 97 x 98) + (1 x 2 + 2 x 2 + 3 x 2 + .... + 97 x 2)
D = (1x2+2x3+3x4+...+97x98) + (1+2+3+...+99)x2
D = (1x2+2x3+3x4+...+97x98) + 100 x 99 : 2
D - 100 x 99 : 2 = 1x2+2x3+3x4+...+97x98
D - 4950 = 1x2+2x3+3x4+...+97x98
(D - 4950) x 3 = 1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+......+97x98x(99-96)
(D-4950)x3 = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 97 x 98 x 99 - 96 x 97 x 98
(D-4950)x3 = 97 x 98 x 99
Và từ đây ta có thể tìm hướng để ra kết quả
1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=20\times21+21\times22+...+99\times100\)
\(3\times A=20\times21\times\left(22-19\right)+21\times22\times\left(23-20\right)+...+99\times100\times\left(101-98\right)\)
\(=20\times21\times22-19\times20\times21+...+99\times100\times101-98\times99\times100\)
\(=99\times100\times101-19\times20\times21\)
Suy ra \(A=\frac{99\times100\times101-19\times20\times21}{3}=360640\)
\(B=3\times4\times5+4\times5\times6+...+98\times99\times100\)
\(4\times B=3\times4\times5\times\left(6-2\right)+4\times5\times6\times\left(7-3\right)+...+98\times99\times100\times\left(101-97\right)\)
\(=3\times4\times5\times6-2\times3\times4\times5+...+98\times99\times100\times101-97\times98\times99\times100\)
\(=98\times99\times100\times101-2\times3\times4\times5\)
Suy ra \(B=\frac{98\times99\times100\times101-2\times3\times4\times5}{4}=24497520\)
a) Số số hạng: \(\frac{\left(99-1\right)}{1}+1=99\)
Tổng: \(\frac{99+1}{2}\cdot99=4950\)
b) Số số hạng: \(\frac{\left(100-2\right)}{2}+1=50\)
Tổng: \(\frac{100+2}{2}\cdot50=2550\)
c) \(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(3\cdot S=1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+3\cdot4\left(5-2\right)+...+99\cdot100\left(101-98\right)\)
\(3\cdot S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3\cdot S=99\cdot100\cdot101\)
Vậy, \(S=\frac{1}{3}\cdot99\cdot100\cdot101=333300\)
Tính tổng : 1 x 2 + 2 x 4 + 4 x 6 + .........+ 98 x 100
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300