Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -5/6 -x = 7/12 + -1/3
⇔-10/12 - 12x/12 = 7/12 + -4/12
⇒-10 - 12x = 7 - 4
⇔-12x = 7 - 4 +10
⇔-12x = 13
⇔x = -13/12
b, x+13/-15 = 1/3
⇔-(x+13)/15 = 5/15
⇒ -x - 13 = 5
⇔-x = 5 +13
⇔-x = 18
⇔x = -18
c,-15/x-1 = -3/5
⇔-75/(x-1).5 = -3.(x-1)/5.(x-1)
⇒-75 = -3x + 3
⇔3x = 3 + 75
⇔3x = 78
⇔x = 26
d, (1/2).x + -2/5 = 1/5
⇔5x/10 + -4/10 = 1/10
⇒5x - 4 = 1
⇔5x = 1 + 4
⇔5x = 5
⇔x = 1
e, (-2/3).x + 1/5 = 1/10
⇔-20x/30 + 6/30 = 3/30
⇒-20x + 6 = 3
⇔-20x = 3 - 6
⇔-20x = -3
⇔x = 3/20
f, 4/5 - (1/2).x = 1/10
⇔8/10 - 5x/10 = 1/10
⇒8 - 5x = 1
⇔-5x = 1 - 8
⇔-5x = -7
⇔x=7/5
a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)
b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)
c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)
e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
Coi: \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{36}+\frac{1}{45}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{13}{20}\)
\(\frac{1}{2}A\times2=A=2\times\frac{13}{20}=\frac{13}{10}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{36}+\frac{1}{45}\)
\(=\frac{1}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{72}+\frac{2}{90}\)
\(=\frac{1}{2}+2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{72}+\frac{1}{90}\right)\)
\(=\frac{1}{2}+2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=\frac{1}{2}+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{2}+2.\left(\frac{1}{2}-\frac{1}{10}\right)=\frac{1}{2}+2.\frac{2}{5}=\frac{1}{2}+\frac{4}{5}=\frac{13}{10}\)