\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(\Rightarrow-A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(-A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(-2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(-2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(-2A=1-\dfrac{1}{101}\)

\(-2A=\dfrac{100}{101}\)

\(-A=\dfrac{100}{101}:2\)

\(-A=\dfrac{50}{101}\)

\(\Rightarrow A=\dfrac{-50}{101}\)

Chúc bạn học tốt!

5 tháng 4 2017

\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)

\(A=-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\)

Đặt \(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+....+\dfrac{1}{9999}\)

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(2B=1-\dfrac{1}{101}=\dfrac{100}{101}\)

\(B=\dfrac{100}{101}:2=\dfrac{50}{101}\)

\(\Rightarrow A=-B=-\dfrac{50}{101}\)

22 tháng 8 2017

\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+...+\dfrac{9997}{9999}\)

\(=1-\dfrac{2}{3}+1-\dfrac{2}{15}+1-\dfrac{2}{35}+...+1-\dfrac{2}{9999}\)

\(=\left(1+1+1+...+1\right)-\dfrac{2}{3}+\dfrac{2}{15}+...+\dfrac{2}{9999}\)

\(=50-1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=50-\left(1-\dfrac{1}{101}\right)=50-\dfrac{100}{101}\)

\(=\dfrac{4950}{101}\)

9 tháng 4 2017

\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)

\(\Rightarrow G=\dfrac{64}{505}\)

9 tháng 4 2017

giải hộ với

13 tháng 8 2017

a) Sửa tí: \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

\(\Rightarrow2A=2.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(\Rightarrow2A-A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2006}}\)

\(\Rightarrow A=2-\dfrac{1}{2^{2006}}\)

b) Đặt \(A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{1}{50.61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{61}\)

\(A=\dfrac{56}{305}\)

c) Đặt \(A=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)

\(A=\dfrac{7}{2}.2.\left(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{9999}\right)\)

\(A=\dfrac{7}{2}.\left(1-\dfrac{1}{101}\right)\)

\(A=\dfrac{7}{2}.\dfrac{100}{101}\)

\(A=\dfrac{256}{101}\)

7 tháng 8 2017

\(A=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot\cdot\cdot\dfrac{10000}{9999}\)

\(=\dfrac{2.2}{3}\cdot\dfrac{3.3}{2.4}\cdot\dfrac{4.4}{3.5}\cdot\cdot\cdot\dfrac{100.100}{99.101}\)

\(=\dfrac{2.100}{101}=\dfrac{200}{101}=1,9801...< 2\)

13 tháng 8 2017

\(A=\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\)

\(A=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}....\dfrac{10000}{9999}\)

\(A=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}......\dfrac{100.100}{99.101}\)

\(A=\dfrac{2.3.4.5.....100}{1.2.3.4......99}.\dfrac{2.3.4.5.....100}{3.4.5.....101}\)

\(A=\dfrac{2.100}{101}=\dfrac{200}{101}=1,9801.....\)

Ta thấy: \(1.9801....< 2\)

Vậy A < 2

3 tháng 8 2017

\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{9998}{9999}\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{9999}\right)\\ =\left(1+1+1+...+1\right)\left(\text{có 50 số 1}\right)-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\\ =50\cdot1-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\right)\\ =50-\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =50-\left(1-\dfrac{1}{101}\right)\\ =50-1+\dfrac{1}{101}\\ =49+\dfrac{1}{101}\\ =\dfrac{4949+1}{101}\\ =\dfrac{4950}{101}\)

17 tháng 8 2018

\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)

\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)

\(D=1+-1+\dfrac{1}{41}\)

\(D=0+\dfrac{1}{41}\)

\(D=\dfrac{1}{41}\)

\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)

=1/57

\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)

\(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{9603}+\dfrac{2}{9999}\right)\)

\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{6}{5}+\dfrac{3}{2}\cdot\dfrac{96}{505}=\dfrac{150}{101}\)

9 tháng 8 2017

a,

\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)

b,

\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\=\dfrac{56}{305}\)

c,

\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)

9 tháng 8 2017

a) Đặt :

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+............+\dfrac{1}{2^{2006}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2005}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2^2}+......+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+.......+\dfrac{1}{2^{2006}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{2006}}\)

b) \(\dfrac{2}{5.7}+\dfrac{2}{7.9}+.........+\dfrac{2}{59.61}\)

\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.........+\dfrac{1}{59}-\dfrac{1}{61}\)

\(=\dfrac{1}{5}-\dfrac{1}{61}\)

\(=\dfrac{56}{305}\)

c) \(\dfrac{7}{3}+\dfrac{7}{15}+.........+\dfrac{7}{9999}\)

\(=\dfrac{7}{1.3}+\dfrac{7}{3.5}+...........+\dfrac{7}{99.101}\)

\(=\dfrac{7}{2}\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+..........+\dfrac{1}{99.101}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{350}{101}\)

4 tháng 8 2017

a)\(=\dfrac{211}{180}\)

b)\(=\dfrac{5}{39}\)

c)=\(=-\dfrac{65}{168}\)