Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(\Rightarrow-A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(-A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(-2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(-2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(-2A=1-\dfrac{1}{101}\)
\(-2A=\dfrac{100}{101}\)
\(-A=\dfrac{100}{101}:2\)
\(-A=\dfrac{50}{101}\)
\(\Rightarrow A=\dfrac{-50}{101}\)
Chúc bạn học tốt!
\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(A=-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\)
Đặt \(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+....+\dfrac{1}{9999}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2B=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(B=\dfrac{100}{101}:2=\dfrac{50}{101}\)
\(\Rightarrow A=-B=-\dfrac{50}{101}\)
\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)
\(\Rightarrow G=\dfrac{64}{505}\)
\(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}+\dfrac{2}{10403}\)
\(=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}+\dfrac{2}{101.103}\)\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{101}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
tik mik nha !!
a) Sửa tí: \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
\(\Rightarrow2A=2.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(\Rightarrow2A-A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2006}}\right)\)
\(\Rightarrow A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2006}}\)
\(\Rightarrow A=2-\dfrac{1}{2^{2006}}\)
b) Đặt \(A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{1}{50.61}\)
\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(A=\dfrac{1}{5}-\dfrac{1}{61}\)
\(A=\dfrac{56}{305}\)
c) Đặt \(A=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)
\(A=\dfrac{7}{2}.2.\left(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{9999}\right)\)
\(A=\dfrac{7}{2}.\left(1-\dfrac{1}{101}\right)\)
\(A=\dfrac{7}{2}.\dfrac{100}{101}\)
\(A=\dfrac{256}{101}\)
\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{9998}{9999}\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{9999}\right)\\ =\left(1+1+1+...+1\right)\left(\text{có 50 số 1}\right)-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\\ =50\cdot1-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\right)\\ =50-\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =50-\left(1-\dfrac{1}{101}\right)\\ =50-1+\dfrac{1}{101}\\ =49+\dfrac{1}{101}\\ =\dfrac{4949+1}{101}\\ =\dfrac{4950}{101}\)
Gợi ý: Sử dụng tính chất phân phối của phép nhân đối với phép cộng để nhóm thừa số chung ra ngoài.
Các bạn không cần trả lời câu hỏi trên của mik vì mik đã hiểu rồi nha . Cho nên đừng trả lời ! OK
Các bạn ơi,mình ghi thiếu,còn 3 câu nữa nha!!!~~nya
e)| \(\dfrac{5}{2}\)x-\(\dfrac{1}{2}\) |-(-22).\(\dfrac{1}{3}\)(0,75-\(\dfrac{1}{7}\))=\(\dfrac{-5}{13}\):2\(\dfrac{9}{13}\)-0,5.(\(\dfrac{-2}{3}\))
f)| 5x+21 | = | 2x -63 |
g) -45 - |-3x-96 | - 54=-207
Làm ơn giúp mình với ạ!Mình đang cần gấp lắm trong ngày hôm nay ạ!!!Mình xin cảm ơn các bạn nhiều nhiều lắm luôn đó!!!Thank you very much!!!(^-^)
a, (\(\dfrac{2}{9}\)(6x - \(\dfrac{3}{4}\)) - 3(\(\dfrac{1}{4}x-\dfrac{1}{5}\)) = \(\dfrac{-8}{15}\)
<=> (\(\dfrac{4}{3}x-\dfrac{1}{6}\)) - (\(\dfrac{3}{4}x-\dfrac{3}{5}\)) = \(\dfrac{-8}{15}\)
<=> \(\dfrac{4}{3}x-\dfrac{1}{6}-\dfrac{3}{4}x+\dfrac{3}{5}=\dfrac{-8}{15}\)
<=> \(\dfrac{7}{12}x+\dfrac{13}{30}=\dfrac{-8}{15}\)
<=> \(\dfrac{7}{12}x=\dfrac{-8}{15}-\dfrac{13}{30}\)
<=> \(\dfrac{7}{12}x=-\dfrac{29}{30}\)
<=> x = \(-\dfrac{58}{35}\)
@Nguyễn Gia Hân
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+...+\dfrac{9997}{9999}\)
\(=1-\dfrac{2}{3}+1-\dfrac{2}{15}+1-\dfrac{2}{35}+...+1-\dfrac{2}{9999}\)
\(=\left(1+1+1+...+1\right)-\dfrac{2}{3}+\dfrac{2}{15}+...+\dfrac{2}{9999}\)
\(=50-1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=50-\left(1-\dfrac{1}{101}\right)=50-\dfrac{100}{101}\)
\(=\dfrac{4950}{101}\)