\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

b,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a,

\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)

b,

\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\=\dfrac{56}{305}\)

c,

\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)

9 tháng 8 2017

a) Đặt :

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+............+\dfrac{1}{2^{2006}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2005}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2^2}+......+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+.......+\dfrac{1}{2^{2006}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{2006}}\)

b) \(\dfrac{2}{5.7}+\dfrac{2}{7.9}+.........+\dfrac{2}{59.61}\)

\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.........+\dfrac{1}{59}-\dfrac{1}{61}\)

\(=\dfrac{1}{5}-\dfrac{1}{61}\)

\(=\dfrac{56}{305}\)

c) \(\dfrac{7}{3}+\dfrac{7}{15}+.........+\dfrac{7}{9999}\)

\(=\dfrac{7}{1.3}+\dfrac{7}{3.5}+...........+\dfrac{7}{99.101}\)

\(=\dfrac{7}{2}\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+..........+\dfrac{1}{99.101}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{350}{101}\)

13 tháng 8 2017

a) Sửa tí: \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

\(\Rightarrow2A=2.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(\Rightarrow2A-A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2006}}\)

\(\Rightarrow A=2-\dfrac{1}{2^{2006}}\)

b) Đặt \(A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{1}{50.61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{61}\)

\(A=\dfrac{56}{305}\)

c) Đặt \(A=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)

\(A=\dfrac{7}{2}.2.\left(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{9999}\right)\)

\(A=\dfrac{7}{2}.\left(1-\dfrac{1}{101}\right)\)

\(A=\dfrac{7}{2}.\dfrac{100}{101}\)

\(A=\dfrac{256}{101}\)

10 tháng 5 2018

A=3/4.(1/5.7+1/7.9+....+1/59.61)

A=3/4.(1/5-1/7+1/7-1/9+...+1/59-1/61)

A=3/4.(1/5-1/61)

A=3/4.56/305

A=42/305

mình làm cho bạn phần A thôi nhé còn phần B mình chưa nghĩ ra cách làm ahihi!

25 tháng 3 2017

Câu 1:

a,\(x=\dfrac{1}{4}+\dfrac{2}{13}\)

\(x=\dfrac{13}{52}+\dfrac{8}{52}=\dfrac{21}{52}\)

Câu 2:

a,\(\dfrac{-2}{5}+\dfrac{3}{-4}+\dfrac{6}{7}+\dfrac{3}{4}+\dfrac{2}{5}\)

\(=\left(\dfrac{-2}{5}+\dfrac{2}{5}\right)+\left(\dfrac{3}{-4}+\dfrac{3}{4}\right)+\dfrac{6}{7}\)

=\(0+0+\dfrac{6}{7}=\dfrac{6}{7}\)

b,\(\dfrac{7}{15}+\dfrac{4}{-9}+\dfrac{-2}{11}+\dfrac{8}{15}+\dfrac{-5}{9}\)

=\(\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{4}{-9}+\dfrac{-5}{9}\right)+\dfrac{-2}{11}\)

=\(\dfrac{15}{15}+\dfrac{-9}{9}+\dfrac{-2}{11}=1+\left(-1\right)+\dfrac{-2}{11}\)

=\(0+\dfrac{-2}{11}=\dfrac{-2}{11}\)

c, \(\dfrac{-5}{7}+\dfrac{5}{13}+\dfrac{-20}{41}+\dfrac{8}{13}+\dfrac{-21}{41}\)

=\(\left(\dfrac{5}{13}+\dfrac{8}{13}\right)+\left(\dfrac{-20}{41}+\dfrac{-21}{41}\right)+\dfrac{-5}{7}\)

=\(\dfrac{13}{13}+\dfrac{-41}{41}+\dfrac{-5}{7}=1+\left(-1\right)+\dfrac{-5}{7}\)

=\(0+\dfrac{-5}{7}=\dfrac{-5}{7}\)

25 tháng 3 2017

Đề bài câu b bài 1 là gì vậy bạn?

20 tháng 3 2017

có nhất thiết phải hỏi mấy bài thế này ko ?

20 tháng 3 2017

a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)

\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)

=1/57

b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)

\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)

=1/41

c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)

=1-1+1/107

=1/107

17 tháng 4 2017

b,=1/5-1/7+1/7-1/9+...+1/59-1/61

=1/5-1/61

=54/115

17 tháng 8 2018

\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)

\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)

\(D=1+-1+\dfrac{1}{41}\)

\(D=0+\dfrac{1}{41}\)

\(D=\dfrac{1}{41}\)

\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)

=1/57

\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)

7 tháng 4 2017

Câu 1:

a) \(-\dfrac{2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)

\(\Rightarrow-\dfrac{2}{3x}+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)

\(\Rightarrow\dfrac{2}{3}x+\dfrac{2}{3}x=\dfrac{1}{6}+\dfrac{1}{3}\)

\(\Rightarrow x.\left(\dfrac{2}{3}+\dfrac{2}{3}\right)=\dfrac{1}{2}\)

\(\Rightarrow x.\dfrac{4}{3}=\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{2}:\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{3}{8}\)

7 tháng 4 2017

lấy bài bd