K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

29 tháng 7 2016

Ta có : 

 A = 1 - 6  + 62 - 63 + ... + 698 - 699 + 6100

6A = 6 - 62 + 63 - 64 + ... + 697 - 698 + 699

6A + A = (6 - 62 + 63 - 64 + ... + 697 - 698 + 699) + (1 - 6 + 62 - 63 + ... + 698 - 699 + 6100)

7A = 1 + 6100

A = (1 + 6100) : 7

Ủng hộ mk nha !!! ^_^

29 tháng 7 2016

Ta có 

   6A=6-62+63-64+...-6100+6101

    A=1-6+62-63+...-699+6100

-----------------------------------------------------

=>7A=6101+1

=>A=(6101+1):7

Chúc bạn học giỏi nha!!!

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+..+0

B=0

C=2^100-(2^99+2^98+2^97+...+1)

đặt D=2^99+2^98+2^97+...+1

=>D=2^100-1

=>C=2^100-(2^100-1)=1

7 tháng 7 2015

a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)

\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)

b) đặt A=2100 - 299 + 298 - 297 +...+ 2- 2

=>2A=2101-2100+299-298+...+23-22

=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 2- 2

=>3A=2101-2

=>A=\(\frac{2^{101}-2}{3}\)

3 tháng 2 2018

thank kiu 

thank kiu

...............

27 tháng 9 2016
  • \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
  • ​​\(\frac{3^{10}.11+9^5.5}{3^9.2^4}=\frac{3^{10}.11+\left(3^2\right)^5.5}{3^9.16}=\frac{3^{10}.11+3^{10}.5}{3^9.16}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
  • 2100 - 299 - 298 - ... - 22 - 2

= 2100 - (299 + 298 + ... + 22 + 2)

Đặt A = 299 + 298 + ... + 22 + 2

2A = 2100 + 299 + ... + 23 + 22

2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)

A = 2100 - 2

Ta có:

2100 - 299 - 298 - ... - 22 - 2

= 2100 - (2100 - 2)

= 2100 - 2100 + 2

= 0 + 2

= 2

  • 38 : 36 + (22)4 : 29

= 32 + 28 : 29

\(=9+\frac{1}{2}\)

\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)

14 tháng 1 2017

Bài 1:

\(A=1^3+2^3+...+99^3+100^3\)

\(=\left(1+2+...+100\right)^2\)

\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)

\(=5050^2=25502500\)

20 tháng 2 2017

A= 13 + 23 + 33 + ... + 1003

= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101

= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )

= 5050 + 101989800

= 101994850