Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9+2^{19}.3^9.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9.\left(1+5\right)}{2^{19}.3^9\left(1+2.3\right)}\)
\(=\frac{6}{7}\)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
b) đặt A=2100 - 299 + 298 - 297 +...+ 22 - 2
=>2A=2101-2100+299-298+...+23-22
=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 22 - 2
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Bài 1:
\(A=1^3+2^3+...+99^3+100^3\)
\(=\left(1+2+...+100\right)^2\)
\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)
\(=5050^2=25502500\)
A= 13 + 23 + 33 + ... + 1003
= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101
= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )
= 5050 + 101989800
= 101994850
Ta có :
A = 1 - 6 + 62 - 63 + ... + 698 - 699 + 6100
6A = 6 - 62 + 63 - 64 + ... + 697 - 698 + 699
6A + A = (6 - 62 + 63 - 64 + ... + 697 - 698 + 699) + (1 - 6 + 62 - 63 + ... + 698 - 699 + 6100)
7A = 1 + 6100
A = (1 + 6100) : 7
Ủng hộ mk nha !!! ^_^
Ta có
6A=6-62+63-64+...-6100+6101
+
A=1-6+62-63+...-699+6100
-----------------------------------------------------
=>7A=6101+1
=>A=(6101+1):7
Chúc bạn học giỏi nha!!!