Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--xyz=4 => √xyz=2xyz=2
--Xét:
*√zx+2√z+2=√zx+2√z+√xyz=√z(√xy+√x+2)zx+2z+2=zx+2z+xyz=z(xy+x+2)
*Tương tự suy ra √xy+√x+2=√x(√yz+√y+1)xy+x+2=x(yz+y+1)
--Thay vào ta có
*2√z√zx+2√z+2=2√xy+√x+22zzx+2z+2=2xy+x+2
*2√z√zx+2√z+2+√x√xy+√x+2=√x+2√xy+√x+2=√x+√xyz√x(√yz+√y+1)=√yz+1√yz+√y+12zzx+2z+2+xxy+x+2=x+2xy+x+2=x+xyzx(yz+y+1)=yz+1yz+y+1
--Đến đây cộng với Số hạng còn lại ta được A =1
=>√A=1.....A=1.....
p/s: có chỗ nào sai bạn nhắc mình nha
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)
\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)
\(=x-2\sqrt{x}+4\)
=.= hok tốt!!
Đặt \(\sqrt{10+2\sqrt{5}}=t\)
\(VT=\sqrt{4+t}+\sqrt{4-t}\)
\(\Leftrightarrow VT^2=4+t+2\sqrt{\left(4+t\right)\left(4-t\right)}+4-t\)
\(=8+2\sqrt{16-t^2}=8+2\sqrt{6-2\sqrt{5}}\)
\(\Rightarrow VT=\sqrt{8+2\sqrt{6-2\sqrt{5}}}\) (không chắc nha)
tth làm chưa triệt để
\(VT=\sqrt{8+2\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{8+2\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{8+2\sqrt{5}-2}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}+1\)
Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :
Nhận xét : A > 0
Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)
\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)
\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)
Vậy A = 2
Đk: \(\hept{\begin{cases}x^2-9\ge0\\2x-6+\sqrt{x^2-9}\ne0\end{cases}}\)
\(A=\frac{\sqrt{\left(x+3\right)^2}+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+3\right)\left(x-3\right)}}\)
TH1: \(\hept{\begin{cases}x+3\ge0\\x-3\ge0\end{cases}\Leftrightarrow}x\ge3\)
\(A=\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{x-3}.\sqrt{x+3}}{2\sqrt{x-3}\sqrt{x-3}+\sqrt{x+3}.\sqrt{x-3}}\)
\(A=\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}=\frac{\sqrt{x^2-9}}{x-3}\)
TH2: \(\hept{\begin{cases}x+3\le0\\x-3\le0\end{cases}\Leftrightarrow}x\le-3\)
\(A=\frac{\sqrt{\left(-x-3\right)^2}+2\sqrt{\left(-x+3\right)\left(-x-3\right)}}{2\sqrt{\left(-x+3\right)^2}+\sqrt{\left(-x+3\right)\left(-x-3\right)}}\)
\(A=\frac{\sqrt{-x-3}\left(\sqrt{-x-3}+2\sqrt{-x+3}\right)}{\sqrt{-x+3}\left(2\sqrt{-x+3}+\sqrt{-x-3}\right)}=\frac{\sqrt{-x-3}}{\sqrt{-x+3}}=\frac{\sqrt{x^2-9}}{3-x}\)
D = \(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\) . \(\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) = \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
0,7320721383
bn ơi là giải chi tiết(dũng não ko phải tay) ^^