K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

0,7320721383

13 tháng 12 2018

bn ơi là giải chi tiết(dũng não ko phải tay)   ^^

15 tháng 12 2018

=0,7320721383

6 tháng 2 2019

--xyz=4 => √xyz=2xyz=2
--Xét:
*√zx+2√z+2=√zx+2√z+√xyz=√z(√xy+√x+2)zx+2z+2=zx+2z+xyz=z(xy+x+2)
*Tương tự suy ra √xy+√x+2=√x(√yz+√y+1)xy+x+2=x(yz+y+1)
--Thay vào ta có
*2√z√zx+2√z+2=2√xy+√x+22zzx+2z+2=2xy+x+2
*2√z√zx+2√z+2+√x√xy+√x+2=√x+2√xy+√x+2=√x+√xyz√x(√yz+√y+1)=√yz+1√yz+√y+12zzx+2z+2+xxy+x+2=x+2xy+x+2=x+xyzx(yz+y+1)=yz+1yz+y+1
--Đến đây cộng với Số hạng còn lại ta được A =1 
=>√A=1.....A=1.....
p/s: có chỗ nào sai bạn nhắc mình nha

6 tháng 2 2019

\(\sqrt{A}=1...A=1\)  giải thích hộ mình đoạn đấy với ạ :>

11 tháng 11 2018

\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)

\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)

\(=x-2\sqrt{x}+4\)

=.= hok tốt!!

1 tháng 2 2019

Đặt \(\sqrt{10+2\sqrt{5}}=t\)

\(VT=\sqrt{4+t}+\sqrt{4-t}\)

\(\Leftrightarrow VT^2=4+t+2\sqrt{\left(4+t\right)\left(4-t\right)}+4-t\)

\(=8+2\sqrt{16-t^2}=8+2\sqrt{6-2\sqrt{5}}\)

\(\Rightarrow VT=\sqrt{8+2\sqrt{6-2\sqrt{5}}}\) (không chắc nha)

1 tháng 2 2019

tth làm chưa triệt để

\(VT=\sqrt{8+2\sqrt{6-2\sqrt{5}}}\)

      \(=\sqrt{8+2\sqrt{\left(\sqrt{5}-1\right)^2}}\)

       \(=\sqrt{8+2\sqrt{5}-2}\)

      \(=\sqrt{\left(\sqrt{5}+1\right)^2}\)

      \(=\sqrt{5}+1\)

1 tháng 9 2016

Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :

Nhận xét : A > 0 

Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)

\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)

\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)

Vậy A = 2

1 tháng 9 2016

cám ơn bạn nhé

21 tháng 6 2019

Đk: \(\hept{\begin{cases}x^2-9\ge0\\2x-6+\sqrt{x^2-9}\ne0\end{cases}}\)

\(A=\frac{\sqrt{\left(x+3\right)^2}+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+3\right)\left(x-3\right)}}\)

TH1: \(\hept{\begin{cases}x+3\ge0\\x-3\ge0\end{cases}\Leftrightarrow}x\ge3\)

\(A=\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{x-3}.\sqrt{x+3}}{2\sqrt{x-3}\sqrt{x-3}+\sqrt{x+3}.\sqrt{x-3}}\)

\(A=\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}=\frac{\sqrt{x^2-9}}{x-3}\)

TH2: \(\hept{\begin{cases}x+3\le0\\x-3\le0\end{cases}\Leftrightarrow}x\le-3\)

\(A=\frac{\sqrt{\left(-x-3\right)^2}+2\sqrt{\left(-x+3\right)\left(-x-3\right)}}{2\sqrt{\left(-x+3\right)^2}+\sqrt{\left(-x+3\right)\left(-x-3\right)}}\)

\(A=\frac{\sqrt{-x-3}\left(\sqrt{-x-3}+2\sqrt{-x+3}\right)}{\sqrt{-x+3}\left(2\sqrt{-x+3}+\sqrt{-x-3}\right)}=\frac{\sqrt{-x-3}}{\sqrt{-x+3}}=\frac{\sqrt{x^2-9}}{3-x}\)

17 tháng 7 2016

D = \(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\) . \(\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)  = \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)