K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

D = \(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\) . \(\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)  = \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

7 tháng 8 2018

a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)

\(A=\sqrt{1}\)

\(A=1\)

b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)

\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)

\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)

\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)

\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)

c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)

\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)

\(C=14-8\sqrt{5}+\sqrt{6}\)

\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Lời giải:

ĐK: \(x,y\geq 0; x\neq y\). Để cho gọn đặt \(\sqrt{x}=a; \sqrt{y}=b\). Khi đó:

\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right).\frac{(\sqrt{x}-\sqrt{y})^2}{x\sqrt{x}+y\sqrt{y}}\)

\(=(\frac{a^2-b^2}{a-b}-\frac{a^3-b^3}{a^2-b^2}).\frac{(a-b)^2}{a^3+b^3}\)

\(=\frac{(a^2-b^2)(a+b)-(a^3-b^3)}{a^2-b^2}.\frac{(a-b)^2}{a^3+b^3}\)

\(=\frac{ab(a-b)}{(a-b)(a+b)}.\frac{(a-b)^2}{a^3+b^3}=\frac{ab(a-b)^2}{(a+b)(a^3+b^3)}\)

\(=\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}+\sqrt{y})(x\sqrt{x}+y\sqrt{y})}\)

8 tháng 8 2016

Bạn xem lại đề nhé :)

Thay 1 bằng xy + yz + zx được : 

\(1+y^2=xy+yz+zx+y^2=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\)

Tương tự : \(1+x^2=\left(x+y\right)\left(x+z\right)\)\(1+z^2=\left(x+z\right)\left(z+y\right)\)

Suy ra \(Q=x\sqrt{\frac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(x+y\right)\left(y+z\right)}{\left(x+z\right)\left(z+y\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)

\(=2\left(xy+yz+zx\right)=2\)(vì x,y,z > 0)

Sửa đề; \(D=\left(\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}-\dfrac{2\sqrt{xy}}{x-y}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(D=\dfrac{x+2\sqrt{xy}+y-4\sqrt{xy}}{2\left(x-y\right)}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{\sqrt{x}}{x-y}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

 

9 tháng 9 2018

what hell ?
Bạn giải hộ ai à?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.vi diệu !

9 tháng 9 2018

hok cũng giỏi ghê 

~ tự biên tự diễn hả ~