K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

b) \(\left(2x^2-3y\right)^3\)

\(=8x^6-3\cdot4x^4\cdot3y+3\cdot2x^2\cdot9y^2-27y^3\)

\(=8x^6-36x^4y+54x^2y^2-27y^3\)

Bạn nên đánh lại đề bài a nhé.

undefined

Bài 2:

a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)

\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)

\(\Leftrightarrow-12x^2-28x-60=0\)

\(\Leftrightarrow3x^2+7x+15=0\)

\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)

Do đó: Phương trình vô nghiệm

b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)

\(\Leftrightarrow16x^2=32\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: Ta có: \(49x^2+14x+1=0\)

=>\(\left(7x+1\right)^2=0\)

hay x=-1/7

Bài 2: Tìm x

a) Ta có: (x-2)(x-1)=x(2x+1)+2

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy: S={0;-4}

b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0x=0\)

Vậy: S={x|\(x\in R\)}

c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x+20=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\frac{10}{3}\)

Vậy: \(S=\left\{-\frac{10}{3}\right\}\)

e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow2x=27-10=17\)

hay \(x=\frac{17}{2}\)

Vậy: \(S=\left\{\frac{17}{2}\right\}\)

20 tháng 10 2020

Bài 1.

a) -2x( -3x + 2 ) - ( x + 2 )2

= 6x2 - 4x - ( x2 + 4x + 4 )

= 6x2 - 4x - x2 - 4x - 4

= 5x2 - 8x - 4

b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )

= x3 + 8 + 2( x + 1 )( x - 1 )

= x3 + 8 + 2( x2 - 1 )

= x3 + 8 + 2x2 - 2

= x3 + 2x2 + 6

c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2

= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1

= 4

d) x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

Bài 2.

a) 4x2 - 4xy + y2 = ( 2x - y )2

b) 9x3 - 9x2y - 4x + 4y

= 9x2( x - y ) - 4( x - y )

= ( x - y )( 9x2 - 4 )

= ( x - y )( 3x - 2 )( 3x + 2 )

c) x3 + 2 + 3( x3 - 2 )

= x3 + 2 + 3x3 - 6

= 4x3 - 4

= 4( x3 - 1 )

= 4( x - 1 )( x2 + x + 1 )

Bài 3.

2( x - 2 ) = x2 - 4x + 4

⇔ ( x - 2 )2 - 2( x - 2 ) = 0

⇔ ( x - 2 )( x - 2 - 2 ) = 0

⇔ ( x - 2 )( x - 4 ) = 0

⇔ x = 2 hoặc x = 4

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 1 không có cơ sở để tính biểu thức.

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 2:

a. 

$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$

$=[(6x+1)-(6x-1)]^2=2^2=4$

b.

$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$

c.

$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$

$\Rightarrow C=\frac{5^{32}-1}{2}$

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi