Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)
\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)
\(\Leftrightarrow-12x^2-28x-60=0\)
\(\Leftrightarrow3x^2+7x+15=0\)
\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)
Do đó: Phương trình vô nghiệm
b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)
\(\Leftrightarrow16x^2=32\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: Ta có: \(49x^2+14x+1=0\)
=>\(\left(7x+1\right)^2=0\)
hay x=-1/7
bài 1
a, \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
=\(27y^3+36y^2+12y-27y^3-9y^2-3y+9y^2+3y+1-\left(36y^2+12y+1\right)\)
= 0
nếu ta dùng cách rút gọn biểu thức thì ta có kết quả
A=(8a-8)x2+(2a-2)x-15a+15
còn nếu sử dụng cách Phân tích thành nhân tử thì ta sẽ có kết quả là
A=(a-1)(2x+3)(4x-5)
(tự xét )
B = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y
hc tốt
tớ chỉ biết làm phần B thôi
B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y
phần A tương tự
\(a)\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\\ \Leftrightarrow4x^2-14x+10x-35-\left(16x^2+24x-9\right)=16\\ \Leftrightarrow-12x^2-28x-44=16\\ \Leftrightarrow-12x^2-28x-60=0\\ \Leftrightarrow3x^2+7x+15=0\\ \Delta=b^2-4ac=7^2-4.3.15=-131< 0\)
Vậy phương trình vô nghiệm
\( b)(8x^2 + 3)(8x^2 - 3) - (8x^2 - 1)^2 = 22\)
\(\Leftrightarrow64x^4-9-\left(64x^4-16x^2+1\right)=22\\ \Leftrightarrow-10+16x^2=22\\ \Leftrightarrow16x^2=32\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\pm\sqrt{2}\)
Vậy \(x=\sqrt{2},x=-\sqrt{2}\)
\(c)49x^2+14x+1=0\\ \Leftrightarrow\left(7x+1\right)^2=0\\ \Leftrightarrow7x+1=0\\ \Leftrightarrow7x=-1\)
\(\Leftrightarrow\)\(x=-\dfrac{1}{7}\)
Vậy \(x=-\dfrac{1}{7}\)
\(\Leftrightarrow\)\(x=-\dfrac{1}{7}\)
giải
A=(3x-5)(2x+11)-(2x+3)(3x+7)
=6x^2+33x-10x-55-(6x^2+14x+9x+21)
=6x^2+33x-10x-55-6x^2-14x-9x-21
= -76
vậy biểu thức không phụ thuộc vào biến x,y
B=(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
vậy biểu thức không phụ thuộc vào biến x
Bài 4:
Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
Bài 1:
\(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)
Vậy \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)
\(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)
Vậy \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)
\(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)
Vậy \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)
Bài 3:
a) \(x^2+12x+39=\left(x+6\right)^2+3>0\)
b) \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)
Bài 2:
a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)
\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)
\(\Leftrightarrow-12x^2-28x-60=0\)
\(\Leftrightarrow3x^2+7x+15=0\)
\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)
Do đó: Phương trình vô nghiệm
b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)
\(\Leftrightarrow16x^2=32\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: Ta có: \(49x^2+14x+1=0\)
=>\(\left(7x+1\right)^2=0\)
hay x=-1/7