K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x

19 tháng 8 2020

làm ơn giúp mình với

19 tháng 8 2020

A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) (  3x + 7 )

=> A = 6x2 + 23x - 55 - 6x- 23x - 21

=> A = - 55 - 21

=> A = - 76 ( không phụ thuộc vào biến x )

B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )

=> B = 8x3 + 27 - 8x3 + 2

=> B = 27 + 2

=> B = 29 ( không phụ thuộc vào biến x )

C = ( x - 1 )3 - (  x + 1 )3 + 6 ( x + 1 ) ( x - 1 )

=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

=> C = - 6x2 - 2 + 6x2 - 6

=> C = - 2 - 6

=> C = - 8 ( không phụ thuộc vào biến x )

6 tháng 10 2018

Ta có:

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=\left[3x\left(2x+11\right)-5\left(2x+11\right)\right]-\left[2x\left(3x+7\right)+3\left(3x+7\right)\right]\)

\(=\left[\left(6x^2+33x\right)-\left(10x+55\right)\right]-\left[\left(6x^2+14x\right)+\left(9x+21\right)\right]\)

\(=\left[6x^2+23x-55\right]-\left[6x^2+23x+21\right]\)

\(=-55-21=-76\)

Vậy biểu thức A không phụ thuộc vào biến x, y.

26 tháng 10 2017

bài 1

a, \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)

=\(27y^3+36y^2+12y-27y^3-9y^2-3y+9y^2+3y+1-\left(36y^2+12y+1\right)\)

= 0

18 tháng 12 2016

Chứng minh bt k phụ thuộc vào biến:

a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)

Vậy giá trị của A k phụ thuộc vào biến

b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)

\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)

Vậy giá trị của bt B k phụ thuộc vào biến

Chứng minh luôn luôn dương:

a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì: \(\left(x-3\right)^2\ge0,\forall x\)

=> \(\left(x-3\right)^2+1>0,\forall x\)

=>đpcm

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)

=>đpcm

18 tháng 12 2016

còn bài này

c, C= (2x+3)(4x2-6x+9)-2(4x3-1)

29 tháng 10 2017

a)  2x + 3y

b)  2x + 1

c)  9x2 + 3x +1

d)  x - 3

Ở mỗi phần bạn phân tích đa thức bị chia thành nhân tử xuất hiện nhân tử chung là đa thức chia. Ta có đc kq như trên nha

9 tháng 6 2018

Bài 1. ( 27x3 - 8) : ( 9x2 + 6x + 4)

= [ ( 3x)3 - 23] : ( 9x2 + 6x + 4)

= ( 3x - 2)( 9x2 + 6x + 4) : ( 9x2 + 6x + 4)

= 3x - 2

Bài 2. A = ( 3x - 5)( 2x + 11) - ( 2x + 3)( 3x + 7)

A = 6x2 + 33x - 10x - 55 - ( 6x2 + 23x + 27)

A = - 28

KL......

B = (2x+3)( 4x2- 6x + 9) -2( 4x3-1)

B = 8x3 + 27 - 8x3 + 2

B = 29

KL......

C= (x - 1)3-(x + 1)3+6( x + 1)( x - 1 )

C = ( x - 1)( x2 - 2x + 1 + 6x + 6) - ( x + 1)3

C = ( x - 1)( x2 + 4x + 7 ) - ( x + 1)3

C = x3 + 4x2 + 7x - x2 - 4x - 7 - x3 - 3x2 - 3x - 1

C = - 8

KL.........

14 tháng 6 2018

<3