Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=3^2+3^3+....+3^{101}\)
\(3A-A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+......+3^{101}-3\)
\(2A=3^{101}-3\)
A = \(\frac{3^{101}-3}{2}\)
\(2^{50}\left(A.2+1\right)=2^{50}.\left(\frac{3^{101}-3}{2}.2+1\right)=2^{50}.\left(3^{101}-2\right)\)
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
=> 250(3101 - 3 + 1 )
= 250.3101 - 2
3A = 1+3 + 32 +33 + .... + 350 +351
2A=3 + 32 +33 + .... + 350 +351 -1-3 - 32 -33 - .... - 350 -351
2A= 351-1
\(A=\frac{3^{51}-1}{2}\)
**** mình đi
A=1+2+22+......+2100
=>2A=2+2223+......+2100+2101
=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)
=>A=2101-1
B=3+32+...+350
2B=32+33+..+351
2B-B=(32+33+......+351)-(3+32+...+350)
B=351-3
2A=2+2^2+....+2^51
A=2A-A=(2+2^2+...+2^51)-(1+2+2^2+...+2^50)=2^51-1
5B=5^2+5^3+.....+5^101
4B=5B-B=(5^2+5^3+....+5^101)-(5+5^2+...+5^100)=5^101-5
=> B=(5^101-5)/4
Tk mk nha
1/ S=1.2+2.3+3.4+...+50.51
=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3
=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)
=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)
=> 3S=50.51.52 => S=50.51.52:3=44200
Đáp số: 44200
2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)
=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)
=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275
A=42925
Đáp số: 42925
a, Ta có : S = 1*2 + 2*3 +3*4 + .... + 50*51
3S=1*2*3+2*3*3+3*4*3+....+50*51*3
3S=1*2*3+2*3*(4-1)+3*4*(5-2)+....+50*51*(52-49)
3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+50*51*52-49*50*51
3S=50*51*52
S=(50*51*52)/3=442000
b,Ta có 12 + 22 + 32 + ....... + n2=\(\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)
=> 12 + 22 + 32 + ....... + 502= \(\frac{50\cdot\left(50+1\right)\cdot\left(2\cdot50+1\right)}{6}\)
=\(\frac{50\cdot51\cdot101}{6}\)= 42925
\(A=1+3+3^2+...+3^{50}\)
\(3A=3+3^2+3^3+...+3^{51}\)
\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)
\(2A=3^{51}-1\)
\(A=\dfrac{3^{51}-1}{2}\)