K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(A=1+3+3^2+...+3^{50}\)

\(3A=3+3^2+3^3+...+3^{51}\)

\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)

\(2A=3^{51}-1\)

\(A=\dfrac{3^{51}-1}{2}\)

18 tháng 10 2015

\(3A=3^2+3^3+....+3^{101}\)

\(3A-A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+......+3^{101}-3\)

\(2A=3^{101}-3\)

A = \(\frac{3^{101}-3}{2}\)

\(2^{50}\left(A.2+1\right)=2^{50}.\left(\frac{3^{101}-3}{2}.2+1\right)=2^{50}.\left(3^{101}-2\right)\)

18 tháng 10 2015

A = 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + ... + 3101

3A - A = 3101 - 3

2A = 3101 - 3

=> 250(3101 - 3 + 1 )

= 250.3101 - 2

10 tháng 9 2015

3A = 1+3 + 3+33 + .... + 350 +351

2A=3 + 3+33 + .... + 350 +351 -1-3 - 32 -33 - .... - 350 -351

2A= 351-1

\(A=\frac{3^{51}-1}{2}\)

**** mình đi

1 tháng 8 2017

ai giúp mình bài này với

2/3+3/51=

29 tháng 9 2018

A=1+2+22+......+2100

=>2A=2+2223+......+2100+2101

=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)

=>A=2101-1

29 tháng 9 2018

B=3+32+...+350

2B=32+33+..+351

2B-B=(32+33+......+351)-(3+32+...+350)

B=351-3

20 tháng 7 2017

\(A=1+2+2^2+2^3+2^4+....+2^{30}\)

\(2A=2+2^2+2^3+2^4+....++2^{30}+2^{31}\)

\(2A-A=\left(2+2^2+2^3+2^4+....+2^{30}+2^{31}\right)-\left(2+2^2+2^3+2^4+....+2^{30}\right)\)

\(\Rightarrow A=2^{31}-1\)

12 tháng 1 2018

2A=2+2^2+....+2^51

A=2A-A=(2+2^2+...+2^51)-(1+2+2^2+...+2^50)=2^51-1

5B=5^2+5^3+.....+5^101

4B=5B-B=(5^2+5^3+....+5^101)-(5+5^2+...+5^100)=5^101-5

=> B=(5^101-5)/4

Tk mk nha

27 tháng 11 2017

1/ S=1.2+2.3+3.4+...+50.51

=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3

=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)

=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)

=> 3S=50.51.52 => S=50.51.52:3=44200

Đáp số: 44200

2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)

=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)

=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275

A=42925

Đáp số: 42925

a, Ta có : S = 1*2 + 2*3 +3*4 + .... + 50*51

3S=1*2*3+2*3*3+3*4*3+....+50*51*3

3S=1*2*3+2*3*(4-1)+3*4*(5-2)+....+50*51*(52-49)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+50*51*52-49*50*51

3S=50*51*52

S=(50*51*52)/3=442000

b,Ta có   12 + 22 + 32 + ....... + n2=\(\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)

=>   12 + 22 + 32 + ....... + 502\(\frac{50\cdot\left(50+1\right)\cdot\left(2\cdot50+1\right)}{6}\)

=\(\frac{50\cdot51\cdot101}{6}\)= 42925