K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Ta có

\(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)

\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)

Vì a>b>0 nên 2a>b

\(\Rightarrow a=2b\)

Thay vào P ta có 

\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)

7 tháng 6 2017

1 là đúng rùi

10 tháng 9 2017

Ta có : \(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) ( vì \(a>b>0\) )

Thay vào viểu thức P, ta có :

\(P=\dfrac{2.2b+b}{3.2b-b}=1\)

15 tháng 8 2017

Vì \(a>b>0\Rightarrow A=\frac{a+b}{a-b}>0\)

\(2a^2+2b^2=5ab\Rightarrow a^2+b^2=\frac{5ab}{2}\)

Ta có : \(E^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5ab}{2}+2ab}{\frac{5ab}{2}-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=\frac{\frac{9}{2}}{\frac{1}{2}}=9\)

\(E^2=9\Rightarrow E=3\)(vì E>0)

Vậy \(E=3\)

15 tháng 8 2017

Có : \(2a^2+2b^2=5ab\Rightarrow\hept{\begin{cases}2a^2+2b^2-4ab=ab\\2a^2+2b^2+4ab=9ab\end{cases}}\Rightarrow\hept{\begin{cases}2\left(a-b\right)^2=ab\\2\left(a+b\right)^2=9ab\end{cases}}\Rightarrow\hept{\begin{cases}a-b=\sqrt{\frac{ab}{2}}\\a+b=\sqrt{\frac{9ab}{2}}\end{cases}}\)

\(\Rightarrow E=\frac{\sqrt{\frac{9ab}{2}}}{\sqrt{\frac{ab}{2}}}=\sqrt{\frac{\frac{9ab}{2}}{\frac{ab}{2}}}=\sqrt{\frac{9ab}{2}.\frac{2}{ab}}=\sqrt{9}=3\)