Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}.\frac{2018}{2019}=\frac{1009}{2019}\)
Vậy \(A=\frac{1009}{2019}\)
Học tốt!!!!
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2A=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(A=\frac{2018}{2019}:2=\frac{2018}{2019}.\frac{1}{2}=\frac{2018}{2019.2}\)mt hỏng, tự tính =))
Số số hạng của A là: ( 2019 - 1 ) : 2 +1 = 1010
Tổng A là: ( 2019 + 1 ) . 1010 : 2 = 1020100
Hk tốt
SSH là :
( 2019 - 1 ) : 2 + 1 = 1010 ( số )
Tổng là :
( 2019 + 1 ) x 1010 : 2 = 1020100
Đ/s:.....
tính tổng
A = 2018 : 2 + 1
A = 1009 + 1
A = 1010
hoặc
A=1+3+5+7+9+...+2017+2019
A = ( 2019 - 1 ) : 2 + 1
A = 1010
a ) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\times1280\)
= \(\frac{1}{2}\times1280+\frac{1}{4}\times1280+\frac{1}{8}\times1280+\frac{1}{16}\times1280+\frac{1}{32}\times1280+\frac{1}{64}\times1280\)\(+\frac{1}{128}\times1280\)
= 640 + 320 + 160 + 80 + 40 + 20 + 10
= ( 640 + 160 ) + ( 320 + 80 ) + ( 40 + 20 + 10 )
= 800 + 400 + 70
= 1270
Mik làm luôn, ko vt lại đề
B = 1/1 - 1/3 + 1/3 - 1/5 +...+1/2017 - 1/2019
B = 1 - 1/2019
B = 2018/2019
TL:
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(B=1-\frac{1}{2019}\)
\(B=\frac{2018}{2019}\)
Vậy \(B=\frac{2018}{2019}\)
\(A=\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{2017\cdot2019}\)
\(A=\frac{1}{2}\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2017\cdot2019}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}\cdot\frac{2014}{10095}\)
\(A=\frac{1007}{10095}\)
\(A=\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{2015\cdot2017}+\frac{1}{2017\cdot2019}\)
\(2A=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2015\cdot2017}+\frac{2}{2017\cdot2019}\)
\(2A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\)
\(2A=\frac{1}{5}-\frac{1}{2019}\)
\(2A=\frac{2014}{100095}\)
\(A=\frac{2014}{10095}:2=\)TỰ TÍNH
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2017.2019}\)
\(\Leftrightarrow S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(\Rightarrow2S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\right)\)
\(\Leftrightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(\Leftrightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{2}{2019}\)
\(\Leftrightarrow2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(\Rightarrow S=\frac{2018}{2019}:2=\frac{1009}{2019}\)
Vậy \(S=\frac{1009}{2019}.\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2017.2019}\)
\(\Rightarrow S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2017.2019}\)
\(\Rightarrow S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(\Rightarrow S=\frac{2018}{2019}\)